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PREFACE TO THE FIRST EDITION

Ii has become the fashion for some authors to include literary qtutatioirs in
thrit niathematical texts, presumably with the aim of conneting mathcmati s

rhi' humanities. The preface of TheCreen Book' of 100 praCtice problems
l'n undergraduate mathematics competitions hinted at connections between
rrulrlt'tn-solving and all the traditional elements of a fairy tale mystery,

lr.discovery, and finally resolution. Although TheRed ii ook may seem to
political overtones, rest assured, dear reader, that the quotations (labellt'd

M:ir l'ushkin and liotsky, just (or ftrn) arc merely an inspiration for your
"II through the cur harried realms of marlrcmati

i/ic Red Book contains 100 problems for undergraduate students training
ft n mathematics competitions, pat ticu larly the Willia in Lowell Putnam
M;imhematical Competition. Along with the problems come useftil hints, and
rimiplete solutions. The book will also be useful to anyone interested in the
posing and solving of mathematical problems at the trndezgradtrate level.

Many of the problems were suggested by ideas originating in a variety of
sources, including Crux Mathematicorl4m, Mathematics Magazine and the

Mathematical Monthly, as well as various mathematics competi•
(suns. Where possible, acknowledgement to known sources is given at the end
irE the book.

Once again, we would be interested in your reaction to The Red Book, and
invite comments, alternate solutions, and even corrections. We make no claim
that the solutions are the "best possible" solutions, but we trust that you will
find them elegant enough, and that The Red Book will be a practical tool in
training undergraduate competitors.

We wish to thank our typesetter and our literary adviser at Integer Press for
their valuable assistance in this project.

Kenneth S. Williams and Kenneth Hardy

Ottawa, Canada

May, 1988

'To be reprinted by Dover Publications in 1997.
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NOTATION

[xJ denotes the greatest integer � z, where x is a real number.

In x denotes the natural logarithm of x.

exp x denotes the exponential function ex.

cl( is) denotes Euler's totient function defined for anynatural IIL11I-

ber n.

GCD(a, b) denotes the greatest common divisor of the integers a and b.

denotes the binomial coefficient n!/k! (n — k)!, where is and

k) k are non-negative integers (the symbol having value zero
when is <k).
denotes Legendre's symbol which has value +1 (resp. —1)

if the integer a is a quadratic residue (resp. nonresidue)
snodulo the odd prime p.

deg (f(z)) denotes the degree of the polynomial f(x).

t.
the of the positive

integer n.

f'(x) denotes the derivative of the function 1(x) with respect to
x.

dct A denotes the determinant of the square matrix A.

Z denotes the domain of rational integers.

Q, R, C denote the fields of rational, real, complex numbers respec-
tively.





THE PROBLEMS

tilt Ihkirzd alwa?jS scts ii ii
will alwmp, be fotsiul 1/us! 1/u task itself arises osilsi u/u is 1/u ititi-
lena! conditions for its solution already exist or are at least irs I/u

of formation.

Karl Marx (1818-1883)

1. Let p denote an odd prime and set ui = exp(2xi/p). Evaluate the
product

(1.0) E(p) = (wni + + ... + w P1)/2)(cA.i't3 + + ...

where ri,.. . , denote the (p — 1)/2 quadratic residues modulo p and
fl(p—i)/2 denote the (p — 1)/2 quadratic nonresidues rnodulo p.

2. Let k denote a positive integer. Determine the number N(k) of
triples (x, y, z) of integers satisfying

I IxI k, Il/I k, IzI �
� k, y—zJ � k, z—x(

3. Let pm 1 (mod 4) be prime. It is known that there exists a unique
integeT to w(p) such that

w2m—1 (modp), 0<w<p/2.
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(For example, w(5) 2,w(13) = 5.) Prove that there exist integers u,b,c,d
with ad — be = 1 such that

pV2 + 2uXY + (aX + bY)2 + (eX + dY)2.

(For example, when 7) — 5 we have

F(2X+Y)2,

tnt

13X2 -I- 1OXY + = (3X + V)2 + (2X 1- V)2.)

4. Let d,.(n), r 0, 1,2,3, denote the number of positive integral
divisors of n which are of the form 4k r. Let m denote a positive integer.
Prove that

(4.0) >j(di(n) — d3(n)) =

5. Prove that the equation

(5.0) p2 x3 + 23

has no solutions in integers x and p.

6. Let f(x, y) — ax2 + 2bxy+cy2 be a positive-definite quadratic form.
Prove that

(f(xi,yi)f(x2,y2))h/2f(xi 7/2)
(6.0)

� (ac b2)(x1p2 x2pl)2,
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for all real numbers x2,p1 , 1,2.

7. Let 11,S,T be three real numbers, not all the same. Give a condi-
tion which is satisfied by one and only one of the three triples

I (R,S,T),
(7.0) (T,—S-l-2'f,R S+T),

I.

8. Let ax2 + bxy + cy2 and Ax2 + Bxy + Cy2 be two positive-definite
quadratic forms, which are not proportional. Prove that the form

(8.0) (aB — bA)x2 -1- 2(aC — cA)xy + (IC— cB)y2

is indefinite.

9. Evaluate the limit

(9.0)

10. Prove that there does not exist a constant c � 1 such that

(10.0)

n in satisfying n � in.

11. Let D be a squarefree integer greater than 1 for which there exist
positive integers A1,A2,B1,B2 such that

JD=
(A1,B1)



Prove that neither
2L)(D + A1 A2 +131132)

2D(1)-f A1A2 — 11182)

is the square of an integer.

12. Let Q arid R denoto the fields of rational and real nuiiilii,s
respectively. Let K nnd L he I ic snialkst su blields (>1 II. which contain both

Q and the real numbers

\/1985 + and +

resI)cctiveiy. Prove that K = L.

13. Let k and I be positive integers such that

GCD(k,5) = GCD(l,5) = GCD(k,I) I

and
—k2 + 3k! — 12 = F2 where GCI)(F,5) = 1.

Prove that the pair of equations

I k = x2 + y2
(13.0)

i = x2 + 2xy + 2y2,

has exactly two solutions in integers z and y.

14. Let r and s he non-zero integers. Prove that the equation

(14.0) (r2 — s2)z2 — 4rsxy — (r2 — s2)y2 = 1

has no solutions in integers z and y.
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15. Evaluate the integral

(15.0) 1
= J lnz ln( 1 — x) dx

16. Solve the relation

(16.0) 1,2,

17. Let n and k be positive integers. Let p be a prime such that

p> (n2 + a + k)2 + k.

Prove that the sequence

(17.0) a2, fl2 + 1, 712 + 2 fl2 + 1

where I = (a2 + n + k)2 — a2 + k, contains a pair of integers (m,m + k) such

that

\pJ \. p /

18. Let

1 1 1
a,, 4+1 + n+3 — 2n+2' fl 0, 1

Does the infinite series a,, converge, arid if so, what is its sum?

19. Let a,,, be ra (� 2) real numbers. Set

A,,=ai+a2+...+a,,, n=1,2,...,ni.
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Prove that

20. Evaluate the sum

S L
for all positive integers a.

21. Let a and b he coprime positive integers. For k a J)OSitiVe integer,
let N(k) denote the number of integral solutions to the equation

(21.0) ax+by=k, x�0,
Evaluate the limit

N(k)L= lim
k

22. Let a, d and r be positive integers. For k = 0,1,... set

(22.0) Uk Uk(a,d,r)
= (a+ kd)(a +(k+ 1)d)...(a +(k+ r)d)

Evaluate the sum

S Uk,
k=O

where n is a positive integer.

23. Let xi,... be n (> 1) real numbers. Set
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Let F be a function of the n(n — 1)/2 variables such that the
inequality

F(x11,x17 x,,
k=1

holds for all
Prove (ha I equality ( ansot laId in 23.0) if 0.

24. Jo a1 ar,, he at (.> teal a hiklL are SU( h

0. Prove the inequality

(24.0) /
(rn)2

25. Prove that there exist infinitely many positive integers which are
not expressible in the form a2 + p, where n is a positive integer and p is a
prime.

26. Evaluate the infinite series

S =

a (� 1) distinct integers and let be
the polynomial of degree a given by

(z—p1)(x —p2)...(x—pn).

Prove that the polynomial

+ I
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cannot he expressed as the product of two non-constant polynomials with
integral coefficients.

28. 'iwo people, A and H, play a game in which the probability that
A wins is p, the probability that 13 wins is q, and the probability of a draw is
r. At the beginning, A has rn dollars and B has a dollars. At the end of each
game the winner takes a dollar from the loser. If A and B agree to play until
one of them loses all his/her money, what is the probabilty of A winning all
the 00003'?

29. Let f(s) be a monic polynomial of degree n � 1 with complex co-
efficients. Let x1,. .. , s,, denote the n complex roots of f(s). The discriminant
D(f) of the polynomial f(s) is the complex Ilumber

(29.0) D(f)= [J

Express the discriminant of f(s2) in terms of D(f)

30. Prove that for each positive integer n there exists a circle in the
xy-plane which contains exactly n lattice points.

31. Let a he a given non-negative integer. Determine the number
S(n) of solutions of the equation

(31.0) s+2y+2z=n

in non-negative integers x,y,z.

32. Let n be a fixed integer � 2. Determine all functions f(s), which
are bounded for 0 < x < a, and which satisfy the functional equation

(32.0) f(s) = (i + ., + ... +
+ (n— 1)a))
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33. Let 1 denote the closed interval [a, bi, a < b. Two functions
1(x), g(x) are said to he completely different on I if 1(x) g(x) for all x in 1.
Let q(x) and r(x) be functions defined on I such that the differential equation

dy 2 +q(x)y+r(x)

has three solutions y2(x), y5(x) which are pairwise completely different
on I. If x(x) is a fourth solution such that. the pairs of functions z(x), y,(x)
are completely different for i — 1,2,3, prove that there exists a constant
K 0, 1) such, that

(330)
(K — l)yi + (Y2 —

34. Let a,, n = 2,3,..., denote the number of ways the product
b1b.2 . . . can be bracketed so that only two of the are multiplied together
at any one time. For example, a2 = 1 since b1b2 can only be bracketed
as (b,b2), whereas 2 as bib2ba can be bracketed in two ways, namely,
(b1(b2b3)) and ((b1b2)b3). Obtain aformulafor a,,.

35. Evaluate the limit

(35.0) L = tan(ysinx)dx.

36. Let E he a real number with 0 < E < 1. Prove that there are
infinitely many integers n for which

(36.0) cosn�1—€.
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37. Determine all the functions f. which are everywhere differentiable
and satisfy

(37.0) 1(x) + 1(Y) = I
for all real .r ;uid p with zy -/ 1.

38. A point X is chosen inside or on a circle. ['wo perpendicular
chords AC and liD of the circle are drawn through X. (Iii the case when X
is on the cirde, the degenerate case, when one chord is a diameter and the
other is reduced to a point, is allowed.) Find the greatest and least values
which the sum S = ACI + BDI can take for all possible choices of the point
x.

39. For n = 1,2,... define the set

A — J {0,2,4,6,8,. . .}, if a 0 (mod 2),
{0,3,6,...,3(n — 1)/2}, if a 1 (mod 2).

Is it true that

u

A sequence of repeated independent trials is performed. Each
trial has probability p of being successful and probability q = 1 — p of failing.
The trials are continued until an uninterrupted sequence of a successes is
obtained. The variable X denotes the number of trials required to achieve
this goal. If Pk Prob(X k), determine the probability generating function
I'(x) defined by

(40.0) I'(x) = xt
k=O
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41. A. 13,G,D are four points lying on a circle such that ABCD is a
convex quadrilateral Determine a formula for the radius of the circle in terms
of a = All, b lid, c CDt and d = DAt.

42. Let AtJCJ) he a convex quadrilateral. Let I' be the point outside
AIJGD such that 41'l = Pill and LAPIJ — go°. The points Q,R,S arc
similarly delined. I'iove thai. the lines and QS aic of equal lciigtli ai,d
perpendicular.

43. Determine polynomials p(z, y, z, w) and q(z, y, z, w) with real
coefficients such that

(43.0) (zy + z + w)2 — (x2 — 2z)(y2 — 2w)
(p(z,y,z,w))2 — (z2 — 2z)(q(z,y,z,w))2.

44. Let C denote the field of complex numbers. Let 1; C — C be a
function satisfying

440 5 f(0)=0,
I f(z)-f(w)l=lz-wI,

for all z in C and w = 0, I,i. Prove that

1(z) = f(1)z or

where 11(1)1 1.

45. If z and y are rational numbers such that

(45.0) tan7rz=y,
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prove that z = k/I for some integer k not congruent to 2 (mod 1).

46. Let P be a point inside the triangle A tIC. Let AP meet DC at
I), lip meet CA at E, and CI' meet All at F. prove that

PA1 P11. IPBI PCI IPCI PAl > 2
P1)1 IPEI

+
IPEI I'll +

IPF! IPDI
-.

47. Let 1 and n be positive integers such that

I < I < n, GCD(I,n)

Define the integer k uniquely by

I <k <n,

k I matrix whose (i,j)-th entry is

(i-- l)I+j.
Let N be the k x I matrix formed by taking the columns of in reverse order
and writing the entries as the rows of N. What is the relationship between
the (i,j)4h entry of M and the (i,j)-th entry of :V rnodulo a?

48. Let m and n be integers such that I in < n. Let i
1,2,... ,rn; j 1,2,.. . , a, be inn integers which are not alL zero, and set

max nil.

Prove that the system of equations

(1 1iX1 + 012X2 + + a1x = 0,
0,

(48.0)

(Z1X1 + Q,n2X2 + + = 0,
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has a solution in integers ,x2,..., not all zero, satisfying

49. Liouvi lie J)rovPd that if

f(x )'

is an ekrrientary function, where f(x) and g(x) are rational functions with
degree of g(x) > 0, then

J f(x)cfr)dx =

where h(x) is a rational function. Use Liouville's result to prove that

J
is not au elementary function.

50. The sequence XO,2I,... is defined by the coriditioiis

X,a + flX,,_j
(iO.0) z0 = 0, = 1, =

+
1.

Determine
L = Jim

51. Prove that the only integers N � 3 with the following property:

if I <k N and GCD(k,N) = 1 then is prime,
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are
N = 3,4,6,8,12,18,24,30.

52. Find the sum of the infinite series

111 1 1S1

53. Semicircles are drawn externally to the sides of a given triangle.
The lengths of the common tangents to these semicircles are 1, rn, and a.
Relate the quantity

im mn ni
— + — + —
a 1 rn

to the lengths of the sides of the triangle.

54. Determine all the functions H R4 —? R having the properties

(i) H(1,0,0,1)=l,
(ii) =
(iii) H(a,b,c,d) = —H(b,a,d,c),
(iv) H(a+e,b,c-t- f,d) = H(a,b,c,d) +H(e,b,f.d),

where a,b, c, d, c, are real numbers.

55. Let Zi z,, be the complex roots of the equation

z" + +... + = 0,

where as,. . . , a (� 1) complex numbers. Set

A = max
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Prove that
� 1 + A, j = 1,2 n.

56. Ef in and ii are positive integers with in odd, determine

(1 = (;Gi(2'" — I, r 1)

57. If 1(x) is a polynomial of degree 2m ÷ I with integral coefficients
for which there are 2rn r 1 integers k1,. . . , such that

(57.0) 1(k1) ... f(k2m+1) 1,

prove that 1(x) is not the product of two non-constant poiynornials with
integral coefficients.

58. Prove that there do not exist integers a,b,c,d (not all zero) such
that

(58.0) 422 + 5b2 — 2cd — 3d2 0.

59. Prove that there exist infinitely many positive integers which are
not representable as sums of fewer than ten squares of odd natural numbers.

60. Evaluate the integral

d.r,

where k is a positive integer.
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61. Prove that
1 (2n

is + 1

is an jute for n = t,2,3

62. the sum of the infinite series

n=O U + t

where a> 1.

63. Let k be an integer. Prove that the formal power series

= 1 + a1x .1- a2x2 +

has integral coefficients if and only if k 0 (mod 4).

64. Let m be a positive integer. Evaluate the determinant of the
m x in matrix Mm whose (i,j)-th entry is GCD(i,j).

65. Let I and m be positive integers with 1 odd and for which there
arc integers r and y with

fi
m

Prove that there do siot exist integers u and v with

(1
(65.0)

5u2 + l6nv + 13v2.
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66. Let

1 1 / —1n2.23 n

l'rove that a,. converges and determine its sum.

67. .4
I

0 < i 6) he a sequence orseveii iutcgeis satisfying

0 — 0'C121

For 0, 1,. .. ,6 let

N, = itumber of a1 (0 <6) such that a3 =

Determine all sequences A such that

i0,1,...,6.

68. Let G be a finite group with identity e. If G' contains elements g
and h such that

ghg'=h2,

determine the order of h.

69. Let a and b be positive integers such that

GCD(a,b) = 1, a b (mod 2).

If the set S has the following two properties:

(i) a,b€S,
(ii) x,y,z E S implies x +y+ z S,
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prove that every integer > 2ab heloiLgs to S.

70. Prove that every integer can be expressed in the form x2+y2—5z2,
where x,y,z are integers.

71. Evaluate the sein of the infinite series

li,2 1n3 ml 1n5

72. Determine constants a, 6 and c such that

3+bk2+ck'+1 _Vck3+bk2 +ck,

for n = 1,2

73. Let n he a positive integer and a,b integers such that

GCD(a,b,n) = 1.

Prove that there exist integers a1,b3 with

a1 a (mod n), b1 b (mod n), GCD(a1,b1) 1.

74. For n = 1,2,... let s(n) denote the sum of the of 2". Thus,
for example, as = 256 we have s(8) = 2+5+6 = 13. Determine all positive
integers n such that

(74.0) s(n) = s(n + 1).
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75. Evaluate the sum of the infinite series

mn(m+n)
I

76. A cross-country racer runs a 10-mile race in .50 minutes. Prove
that somewhere along the course the racer ran 2 miles in exactly 10 minutes.

77. Let AB he a line segnient with midpoint 0. Let II he a point on
AD between A and 0. Three semicircies are constructed on the same side of
AB as follows: Sj is the semicircle with centre 0 and radinsl0Al = OBI; S2
is the semicircle with centre R and radius All, meeting RB at C; S3 is the
semicircle with centre S (the midpoint of CII) and radius ICSI = ISBI. The
common tangent to S2 and S3 touches S2 at P and S3 at Q. The perpendicular
to AD through C meets S3 at I). Prove that PCQ B is a rectangle.

78. Determine the inverse of the n x a matrix

0l1...1101...1
(78.0) s= 1 1 0 ... 1

1 1 1 ... 0

where a � 2.

79. Evaluate the sum

(79.0) S(n) = >J(_1)kcosn(ksr/n),
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where n is a positive integer.

80. Determine 2 x 2 matrices B and (' with integral entries such that

81. Find two non-congruent similar triangles with sides of integral
length having the lengths of two sides of one triangle equal to the lengths of
two sides of the other.

82. Let a,b, c be three real numbers with a < b < c. The function
1(z) is continuous on (a,c] and differentiable on (a,c). The derivative f'(x)
is strictly increasing on (a,c). Prove that

(c — b)f(a) + (6 — a)f(c) > (c — a)f(b).

83. The sequence {a,7 = 1,2,. . is such that > 0yn+1 >
0 ,rn 1,2,... ,and converges. Prove that

—

converges and determine its sum.

84. The continued fraction of where D is an odd aonsquare
integer> 5, has a period of length one. What is the length of the period of
the continued fraction of +
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85. Let G be a group which has the following two properties:

(i) G has no element of order 2,
/ (ii) (zy)2 = (!/z)2, for all z,y C.

Prove that C is abçlian.

86. Let A be an n x n real symmetric matrix whose entries
satisfy

(86.0) 1, 2,
2=1

for all i = 1,2 n. Prove that 0 � det A � 1.

87. Let fl be a finite ring containing an element r which is not a
divisor of zero. Prove that 1? must have a multiplicative identity.

88. Set = {1,2,. -. , n). For each non-empty subset S of .1,, define

w(S)= maxS—rninS.
s(S sES

Determine the average of w(S) over all non-empty subsets S of .1,,.

89. Prove that the number of odd binomial coefficients in each row
of Pascal's triangle is a power of 2.

90. Fromthenxnarray

1 2 3 ..n
n+l n+2 n+3 ... 2n
2n+1 2n+2 2n-f3 ... 3is

(n—1)n+l (n—1)n-l-2 (n—1)n+3 ...



22 PROBLEMS

a number is selected. 'ihe row and column containing x1 are then deleted.
From the resulting array a number is selected, and its row and column
deleted as before. The selection is continued until only onc number remains
available for selection. Determine the sum 4- + 4- x,,.

91. Suppose that p X's and q 0's are placed on the (ircllmfere:ic-' of
a ciicle. The nutitber of occuirences of two adjacent X's is a and the number
of occurrences of two adiaceil 0's is 5. l)eterniiiie — S in ternis nip and q.

92. In the triangular array

Ill
1 2 3 2 1

-.
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

every entry (except the top 1) is the sum of the entry a immediately above it,
and the entries b and c iinnediately to the left and right of a. Absence of an
entry indicates zero. Prove that every row after the second row contains an
entry which is even.

93. A sequence of ii real numbers x1 r, satisfies

930 f x1=0,
i � n),

where c is a positive real number. Determine a lower hound for the average
0f Z1,...,Xn as a function ofc only.

94. Prove that the polynomial

(94.0) 1(x) = 4- x3 4- x2 4- x 4- 5
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in irreducible over Z for n � 4.

95. Let a1 be ii (� 4) distinct real numbers. Determine the
general solution of the system of 71 — 2 equations

X1 4 4• 4- x,, = 0,

.'i 4- (L2X2 4 • 4- 0,

(95.0) •J-4c2 4.... 4 a2x,, (I

± = 0,

in the n unknowns x1 're.

96. Evaluate the sum

S(iV)= N=2,3

m+n>N

(?CD(.nr.)=i

97. Evaluate the limit

(97.0)

98. Prove that

(98.0)
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99.
11 :1

23 n

the suni

S —
n(n

100. 1br x > dcterniine sum of the infinite series

x r2

1)(x2+ fl +
( +1)(.2+1)(4+ fl+"
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Still .'il?T(IU(lCd in tl1( da7ked niqid., we look lo 11s F.(LSI W7Ih ra:pee-

tation: a hint of a brig/il new day.

Aleksander Sergeevicb Pushkin (1799-1837)

1. Let

(p—1)/2

N(k)= 1,
i,j=1

,-.+n,ek (modp)

and prove that
N(k)N(1), k=1,2,...,p—1.

Next, evaluate N(O) and N(1), and then deduce the value of E(p) from

p—i

k=O

2. Prove that
1,

where the variable z is summed from —k to k; the variable y is summed
from max(—k,z — k) to min(k,z + k); and the variable z is summed from
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x — k, y — k) to mm (k, x + k, y + k). Then express the triple sum as
the sum of six sums specified according to the rclativc sizes of O,x and p.

3. use the fact that (mod p) to prove that there are
integers a and c such that p ((2 + Then Ic; s and I be integers such that
at - - CS — 1. Prove that as + ci f ±1, and deduce

;iIL iiiteger q can be found so that b (_ a — ag) and d (— I rg) satisfy
a!; + ed fw, tuE — be 1 and b2 + d2 - + 1)/p.

4. Prove that

(d1(n) — d3(n)) = >
L1 n=1 dfn

d odd

and then interchange the order of summation of the sums on the right side.

5. Rule out f-lie possibilities z 0 (mod 2) and z 3 (mod 4) by
congruence considerations. if x 1 (rnod 4), prove that there is at least one
prime p 3 (mod 4) dividing a2 3x + 9. Deduce that p divides

a contradiction.

6. Use the identity

=
(aaix2 + bx,y2 + bx2yj + cy1 + (cc — b)2(x;y2 —

together with simple inequalities.

7. Prove that exactly one of the triples

(a,b,c) = (R,S,T), (T,—S + 2T,R - S + T), (B — S + T,2R — S,R),

satisfies
or a�b>c,
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by considering cases depending upon the relative sizes of fl, S and T.

8. Considiff the sign of the discriminant of

(al) — bA)z2 + 2(a(7 — cA)xy + (bG — cL?)y2.

9. I'rovo

a I
— Z_.2k

5=1 k=O

tends to zero as vs —+ 00.

10. Consider the case when n = p + 1 and as = p, where p is a prime
suitably large compared with c.

11. Assume that 2D(D + A1 A2 + sB1l12) is a square, where c ±1.
If D is odd, show that

I D+A1A2+€B1B2 =2DU2
D—A1A2—B1B2 =2DV2

A1132—eA2B1 =2DUV

Deduce that U2 + V2 = 1. Then consider the four possibilities (U, V) =
(±1,0), (0,±1). The case D even can be treated similarly.

12. Set

= 985 ± = \/3970 ± 64V1,
and prove that

cs++cv_=13+, cv÷—cv-=/3-.
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13. If (x,y) is a solution of (13.0), prove that

a,2 + xy — 7/2 =

alI(l then solve the $ystern of equations

1x2 +y2 = k,
x2 +2xy +2y2 1,
x2 +xy —y2 =±F,

for x2, xy and y2

14. Factor the left side of (14.0).

15. Male the following argument mathematically rigorous:

jlnxlii(l—z)dx =

=

=
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16. Taking n = 1,2,..., 6 in (16.0), we obtain

a(1) = 1/2, a(2) = —1/3, (((3) = 1/4,
a(4) = -.1/5, a(5) 1/6, a(6) —1/7.

This suggests that a(n) = which can be proved by induction
On fl.

17. Consider three cases to the folknving values of the
Legendre symbol:

ffl2+k\ (ifl+1)2+k\I—I=1 or I i=1
\ I) /

1fl2+k\ f(n+1)2+k\or I—I=t ———-1=-—!.\p) p )

In the third case, the identity

(n2 +n+k)2 +k = (fl2÷k)((fl+ 1)2+k)

is useful.

18. Rearrange the terms of the partial sum

N1 i

and then let N —' oo.

19. Use

A2 A 2 A 2
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to prove that

� +

['hen use

—

1) J)IOVI tliuit

Putting these two inequalities together, deduce that

20. Use the ideittity

21. All integral solutions of ax + by = k are given by

x=g+bt, y=h—at, i=O,i1,±2,...

where (p, h) is a particular solution of ax + by = k.

22. Prove that

UkVk_uVk, k=O,1,...
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where

= (a + (k + (k + r)d)nl'
k = —1,0,1,...

23. l'rove that the

7) .,)

holds by replacing each by — M for suitable M — M(ii ,..., x,,) in
(23.0).

24. Apply the Cauchy-Schwarz inequality to

25. Consider the integers (3m 2)2, m = 1,2

26. Use the identity

arctan = aretan — arctan n 2.3\n—lj \n+1J

27. Suppose that = h(z)k(x), where h(x) and k(x) are non-
constant polynomials with integral coefficients. Show that h(x) and k(x)
can be taken to be positive for all real x, and that h(p1) = k(p1) = 1, i
1,2,..., n. 1)educe that h(x) and k(x)are both of degree n, and determine the
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form of both h(s) and k(s). Obtain a contradiction by equating appropriate
coefficients in and h(s)k(x).

28. Let p(k), k = 0, 1,... , denote the probability that A wins when
A has k dollars. Prove the recurrence relation

ap(k+2).-(a+b)p(k-l. 1)-Fbp(k)=0.

29. If are the n roots of f(s), the 2n roots of f(s2) are

30. Find a point P such that any two different lattice point must be
at different distances from P. '[hen consider the lattice points sequentially
according to their increasing distances from P.

31. Determine the generating function

n=O

32. As f(s) is bounded on (0, a) there exists a positive constant K
such that

< K, 0 < x < a.

Use (32.0) to deduce successively that

If(x)I<K/n, 0<x<a,
f(x)kK/n2, 0<z<a,

etc.
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33. Consider the derivative of the function

f() -z)
(Yi — fIs)(Y2 — a)

34. Set 1. Prove the recurrence relatiou

0n+1 = f + + +

and use it to show that the generating function A(x) = n,x" satisfies
A(x)2 A(x) — a. Then solve for A(x).

35. Use L'}fôpital's rule, or use the inequality

to estimate the integral tan(y sin a) dx.

36. Use a result due to Hurwitz, namely, if 0 is an irrational number,
there are infinitely many rational numbers n/b with b> 0 and (JCD(n,b) = I
such that

0— a/bI <

37. 1)ifferentiate (37.0) with respect to a and y to obtain

(14- x2)f'(x) = (1 + y2)f'(y).
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38. Introduce a coordinate system and use simple inequalities to show
that max S = 4R and mm S = 2R, where R is the radius of the circle.

39. that

n=I

where
X — {O,2.4,...), Y = }

40. Prove that

(0 ,0�k<n—1,
p"

,n+1<k<2n,
and

Pk(1_ k>2n.

Use these to find a linear equation satisfied by

41. First prove that the circururadius of a triangle with sides of length
1, m and a is given by

__________

Next show that

ACI =
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Finally, apply the above two results to AAHC.

42. Consider the quadrilateral AJ3CD as lying in the complex plane.
Ite.preseiit tl%( vertices A. 13,G, I) by the complex ntIll'il)erS e,b,c,d respec-
tively. Prove that P, Q, S are represented by the numbers

i-;' (n + ib), (h +

(c+ td),

I(SpeCtiVtly. Ilitu uJiti p 1 111(1 1,

43. Try a solution of the form

where X and Y are polynomials in x, w and z. Substitute in (43.0) and SOlve
the resulting equations for X and Y.

44. Sett-s f(l)andfi = 1(i). Prove that kxj 1,1(5—131 =

l)educe that + 132
— 0 so that Next from (44.0) deduce

that
f + = z ±

=—EIZ-l-(iZ.

Now solve for f(z).

45. Let x be a rational number such that y = tan six is rational.
Prove that z = 2cos 2irx is a rational root of a nionic polynomial with integral
coefficients. l)ednce that z = 0,±l,±2.

46. Let denote the areas of L\PBC, APAB respec-
tively. Prove that

PAl — S3

IPDI Si



36 HINTS

with similar expressions for and

47. Prove that the (i,j)-th entry of N is 1 times the (i,j)-th entry of
M modulo n.

48. There are (N + 1)" vectors (y1,y2,. . . ,p,,) of integers satisfving
0 � N, 1 � j � n. For each of these vectors the corresponding value of

-: = + I �
satisfies --naN � � ncN, so the vector (L3, L2,... , of integers can
take on at most + different values. Choose N appropriately and
apply Dirichiet's box principle.

49. Suppose that f is an elementary function, so that by
Liouville's result, there is a rational function p(x)/q(x), where p(x) and q(x)
are polynomials with no common factor, such that

f dx =j q(x)

Differentiate both sides to obtain

p'(x)q(x) — p(x)q'(x) — 2xp(x)q(x) = q(x)2

and deduce that q(x) is a nonconstant polynomial. Let c denote one of the
complex roots of q(x) and obtain a contradiction by expressing q(x) in the
form c(s) = (x — c)mr(x), with r(x) not divisible by (x — c).

50. Prove that

n=1,2
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51. Let Pk denote the k-tb prime. Suppose that N > 121 is an
with the property (51.0). Let be the largest prime less than or equal to 'IN,
so that n � 5, and N Use property (51.0) to obtain the inequality
N � P1P2 Then use flertrand's postulate

Pk+i 2Pk, k = 1,2,...

to obtain

from the inequality .. . < Deduce the contradiction n � 4.
Check property (51.0) for the integers N — 3,4,..., 121 directly.

52. Prove that

x2+x+1 —dx
o x4+z3+x2+x+l

and then use partial fractions to evaluate the integral.

53. Let ABI=2c,IBCI=2a,ICAI=2b. Showthat

1=

with similar expressions for m and n.

54. Evaluate

11(1,1,0,0) , 11(0,0,1,1),
11(0,1,1,0), 11(1,0,0,1)

using (i) and (iii). Then express H(a,b,c,d) in terms of these quantities by
means of (i), (ii), (iii) and (iv).

55. Set f(z)= and note that forz Owe have

I a1
If(z)I = z
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(1,,

=

�
\

1

1 1

and then consider
2""' =(kd+ 1)"— (id—

57. Suppae that 1(x) = g(x)h(x), where g(x) and h(x) are noacort-
stant polynomials with integral coefficients chosen so that

deg(g(x)) � deg(h(x)).

Deduce that deg(g(x)) � rn and that g(k,) = ±1, i ,2sn + 1. Let
c = +1 (resp. —1) if +1 (resp. —1) occurs at least m + 1 times among
the values = ±1, i 1,2,... ,2rn + 1. Then consider the polynomial

58. Suppose a,b,c,d are integers, not all zero, satisfying (58.0). Show
that without loss of generality a, b, c, d may be taken to satisfy

GCD(a,b,c,d) = 1

By considering (58.0) modulo 5 prove that
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59. Consider the integers 72k + 42, k = 0, 1,...

60. Use the identity

2k sin kr cosk x — SIlL 273

61. Express
1 (2n

71+1

as the difference of two binomial coefficients.

62. Use the identity

2" 211 211+1
a>1.

a2" + 1 a2" — 1 — I

63. Prove that

= 2(—1)"' (2n_;2)

and appeal to Problem 61.

64. Let C1, C2,.. . ,G,,, denote the columns of M111. Determine a
linear combination of C1, C2,.. . , C11,_1 which when added to Cm gives the
column (0,0 Deduce that dat Mm = dot M,11.1.
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65. Assume (65.0) holds and use congruences modulo S to obtain a
contradiction.

66. Prove that.

11 (—1)"'x' dx,
j0 14-x

and use this rcprselLtation of to deduce that

N
1

-

67. Let i4 be a sequence of the required type, and let k denote
the number of zeros in A. First lrove that k = 3. Deduce that A -=
{ O,0,0,a3,a4,as,3}, where 1 < a4 3. Then prove that = 2.

68. Prove that

n.=1,2 5.

69. Prove that every integer N > 2ab is of the form

N=xa+yb, x�0, x+yml(mod2),

and that all integers of this form belong to S.

70. If in is even, say in = 2n, show that

in = (an + b)2 + (cn + d)2 — 5(cn + f)2,
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for suitable constants a, 6,.. . , f. The case m odd is treated similarly.

71. Note that

lii2 1n3 ml loin

/ 1 l\=ln2y1

aud estimate (Iii k)/k fur largm n using 11w luiler-hl;o !,au rum

formula.

72. Express — in the form — where
p(k) is a cubic polynomial in k.

73. Choose aj to be any nonzero integer such that a1 a (mod n).
Then set = 6 + rn, where r is the product of those primes which divide a1
but do not divide either b or n. Prove that GCJ)(a1, = 1.

74. Prove that s(n + I) 2s(n) (mod 3), and use this conguence to
show that there are no positive integers n satisfying s(n) = s(n + 1).

75. Show that

1
S =

mn(m + n)
f—7

d3

by collecting together those 172, n in the sum A = 1/(vnn(m + n))
having the same value for GCI)(m,n). Then evaluate time sum A by proving
that it is equal to the integral

_x)dX
J0 x
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which can be evaluated by means of the transformation x = 1 — e".

76. Apply the intermediate value theorem to the function T(x)
fined to be the time taken in minutes by the racer to run from the point
miles along the course to the point x + 2 miles along the course.

77. Choose a coordinate that

A (—1,0), 0 (0,0), 13 (1,0)

Then R = (—a,O) with 0 < a < 1. Deduce that

C = (1 — 2a,0),
S=(J —a,0),
D=
P=
Q = I — 2a2, — a))

and calculate the slopes of PC, PD, QC and QD.

78. Let I denote the n x n identity matrix. Set U = S + I. Prove
that ,j2 = n(J. Seek an inverse of S of the form ci! — I.

79. Replace cos(kir/n) by + where = and
use the binomial theorem.

80. Let A
=

and ShOW that A3 + 3A2 + 2A = 0. Then

consider (A +

81. Let the sides of the triangles be a, b,c and b, c,d. 'I'he two triangles
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are similar if a/b = b/c = c/d. Choose positive integers to satisfy this relation
remenihering that the triangle inequalities c <a + b, etc must be satisfIed.

82. Apply the mean value tlteoremn to on the intervals (a,!,) and

83. First show that n.e, — 0. 'l'lien tel. a eo in

>, —

k-i k=I

84. Use the fact that the length of time period of the continued fraction
of .J115 is one, and that D is an odd nonsquare integer > 5, to show that
D =- 4c2 + 1, c � 2. Then determine the continued fraction of +

85. For z,y G prove that (xyr1y1)2 1.

86. Let A denote one of the eigenvalues of A and let be a nonzero
cigenvector of A corresponding to A. By applying simple inequalities to an
appropriate row of A — < 1. Then mISC the fact that
A is real symmetric and the relationship between det A and the cigenvalues
of A.

87. Show that there exists an integer k � 2 such that r Then
prove that rk1 is a multiplicative identity for R.

88. 1'or I � k < I n let S(k,l) denote the set of subsets of .1,
with S k and = 1. Evaluate and then compute
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w(S) u6ing

ui(S) = (I — k)IS(k,l)I.

89. Write n in binary notation, say,

n = 2a1+ 2a3 + ... +

where a1,. . . , are integers such that a1 > a2> •'> � 0, and then use

(1+x)2° (mod 2),
(1 + zY' = (1 + x)202 (1

90. Suppose that z1, 1 i n belongs to the r1-th row and the s,-th
column. Show that

= — n2 +

and then use the fact that both and are permuta-
tions of { 1,2,.. .,n }.

91. Let denote the number of occurrences of XX,
X0, OX, 00 respectively. Relate to a, b,p, q. Prove that

= and deduce the value of a — b in terms of p and q.

92. Consider the entries of the triangular array modulo 2. Show that
the pattern 1101

10001110
1010
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is repeated down the left edge of the array from the fourth row down.

93. Let be any real number such that
I = + Cl, and

consider

94. If we have 1(x) = g(x)h(x) then without loss of generality g(0) =
±1, 14(0) = ±5. Prove that one of the complex roots /3 of g(x)satisfle.s 1/31 � 1,
and then deduci that 1(13)1 � I.

95. Set

f(x)=(x—a1)(x—a2)(x—afl).

Prove that

(1 1 \ fai
and

are two solutions of (95.0). Deduce the general solution of (95.0) from these

two solutions.

96. By picking out the terms with n = N in the sum 3(N), show that
.s(N)=s(N— l)for N � 3.

97. Prove that

fit' a:L=i I dxdy
Jo Jo x2+y2

and evaluate the double integral using polar coordinates.

98. For convenience set p = ar/li, and let c = coep, s = ship. Use

the imaginary part of

(c+is)1' = —1,
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to prove that
(us + 3255)2 1 Ie?(1 — 452)2

Then show that

tan3p4-4sin2p= =

l)educt' that tue + sign holds by considering the sign of the left side.

99. Use partial summation and the fact that — in k) ex-

ists.

100. Use the identity

i
(r —1) (x+ + 1)(x4 + + 1)

= — 1) — — 1 J
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.SOlfle people think we are wrong but only tOne will tell: gwen till
the alternatives, we have the solution.

Lev Davydovich Broiistein Trotslty (1879-1940)

1. Let p denote an odd prime and set w = cxp(2iri/p). Evaluate the
product

(1.0) = (w" + 32 ...... + 4- -I- ... +

where v1,.. ,f(5_i)/2 denote the (p — 1)/2 quadratic residues modulo p and

fl(5_1)12 denote the (p — 1)/2 quadratic nonresidues modulo p.

Solution: We set q = (p — J)/2 and

(11)
Jo, if pEl (mod4),

1, if pw3 (mod4),

and fork 0,1 p—i let

(1.2) 1.
t,j=1

r,+n,ak (modp)
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If k is a quadratic residue (resp. nonresidue) (mod p) {kr1 : i = 1,2,..., q}
is a complete system of quadratic residues (resp. nonresidues) (mod p) and
{ : j = 1,2 q) is a complete system of quadratic nonresidues (resp.
residues) (mod p). by kr, and n3 by kn, in (1.2), where I < k <
p — 1, we obtain

N(k)= k — 1,2 p—i

Next, we tote that

1

(zncd p)

as —1 is a quadratic residue (mod p) forp = I (mod 4) and —1 is a quadratic
nonresidue (mod p) for p 3 (mod 4). Now as

p—i q

k=t:) i,j=i

we obtain, from (1.3), (1.4), aud (1.5),

l-2qN(1) =

that is

N(l)=

Finally, we have

=

=
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p—i

=
k=O

(mM p)

p—i

>kN(k)
k=O

— I)
N(O) N(1)

tq— (q- ()/2, by (I.4)aiid (1.6),

that is
— f(1 —p)/4, if 1 (mod 4),

(1 + p)/4, if 3 (mod 4),

as required.

2. Let k denote a positive integer. Determine the number N(k) of
triples (z,y,z) of integers satisfying

'2 0 J lxl <k, lzI � k,
1 Ix-yI�k,

Solution: The required number P1(k) of triples is given by

N(k)= I

z—yI�k

Ix—xI�k

k k k

=>
x—k<V�T+k x—k<z<x+k
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that is

where tile second sum is taken over y = rnax(—k,x--k) toy = rnin(k.x+k),
and the third sum is taken over a = max (—k, a — k, y — k) to a = mm (k, a +
k,y + k). We now split the sum on the right of (2.1) into six sums S1
where a and y are restricted as follows:

in S1:
a<O�y, in S2;

in S3;
O�y<x, in Si;
y<O�x, inS5;
y<z<0, inS6.

Clearly, we have

k k k>'x0 VZ z=y—k

k k

= > >(2k+1-y)

= l)(3k+2)—(4k+3)x+x2)
x=l)

=

= 1)(k-I-2)(4k+3).

Similarly, with E denoting k(k + 1)(2k + 1)/3, we obtain
—1 z+k xfk

S2= > =E,
.r=—k d) 2=5-k
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—1 —I r+k
53 = >1 > 1 L,

z=—k yx z=—k

k s--i k

= >i 1 = E.
r - 3 i0 :T—k

k —i y+k
Sc >11=E,

2—U u=x—k

y=—k ;=—k

.- I)k(4k+ 1).

Thus we have

N(k) = S1 + S2 + + S6

= I)(k+2)(4k+3)-4- 1)(2k+ 1)

1)k(4k+ 1)

4k3+6k2+4k+1
= (k+l)4—k4.

3. Let p 1 (mod 4) be prime. It is known that there exists a unique
integer w v(p) such that

—1 (mod p), 0 < w <p/2.

(For example, w(5) = 2, w( 13) = 5.) Prove that there exist integers a, b, c, i
with ad — bc = 1 SUCh that

pX2 + +
(w2 i)y2 (aX + bY)2 + (cX + dY)2.

(For example, when p = 5 we have

5X24-4XY +Y2 X2+ (2X+ Y)2,
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and when p = 13 we have

13X2+ 1OXY+2Y2rs(3X+1')2+(2X-4-Y)2.)

Solution: We make use of the following property of the reals: if r is any real
number, and n is a positive integer, then there exists a rational

number h/k such that

(3.1) —
k(n+ 1)'

1 k � n, GCD(h,k) = 1.

Taking r = —w(p)/p and n = we see that there are integers a and e
such that

(3.2)

Setting c = w(p)a+pe, we see from (3.2) that cl < and so 0 < a2+c2 <'Ip.
But c Wa (mod p), and so a2 + c2 a2(1 + to2) 0 (mod p), showing
that

(3.3) p=a2+c2.

As p is a prime, we see from (3.3) that GCD(a,c) = 1. Hence, we can choose
integers s and I such that

(3.4) at—cs=1.

Hence
(as+ct—w)(a,s+ct+w)

= (as-Fct)2—tvt
= (a2 + c2)(s2 + t2) — (at — cs)2 — w2
= p(s2+tt)—(1+w2)

0 (modp),

so that

(3.5) as + ct fw (mod p), f = ±1.
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Hence there is an integer g such that

(3.6) as+ct = fw+gp.

Set

(3.7) b=s—ag, d=t—cg.

Then, by (3.3), (3.4), (3.6), and (3.7), we have

(3.8) ab-fcd=ftu, ad—bc=. 1.

We now obtain

p(b2 + d2) = (a2 + c2)(b2 + d2)

= (ab + cd)2 + (ad — bc)2

=

so that

(3.9) b2+d2 = (w2+ 1)/p.

Then, from (3.3), (3.8), and (3.9), we have

(3.10) (aX + bY)2 + (cX + dY)2 = pX2 + 2fwXY +
(to2+ l)y2

If f = 1 then (3.10) is the required identity. If f = —1, replace b,c,Y by

—b, —c, —Y respectively to obtain the desired result.

4. Let r = 0,1,2,3, denote the number of positive integral
divisors of n which are of the form 4k + r. Let m denote a positive integer.
Prove that

E(di(n) — d3(n)) =
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Solution: We have

— d3(n)) = >
(j)(d_1)12

n—i din
d odd

= >12 >12
.1 odd 1 <.iL<m

— >.(_i)(d i)/2
>.

=
d odd

=

This completes the proof of (4.0).

5. Prove that the equation

(5.0)

has no solutions in integers x and p.

Solution: Suppose that (x,y) is a solution of (5.0) in integers. if x
0 (mod 2) then (5.0) gives p2 3 (mod 4), which is impossible.

hence, we must have z 1 (mod 2). if x 3 (mod 4) then (5.0) gives
p2 2 (mod 4), which is impossible. Hence, we see that x I (mod 4). In
this case we have x2 — 3x + 9 3 (mod 4), and so there is at least one prime
p 3 (mod 4) dividing x2 — 3x + 9. Since x2 — 3z + 9 is a factor of x3 + 27,
we have + 27 0 (mod p). Thus by (5.0) we have p2 —4 (mod p).
This congruence is insolvable as —4 is not a quadratic residue for any prime
p 3 (mod 4), showing that (5.0) has no solutions in integers x and p.

6. Let f(x, y) az2 +2hzy+ cy2 be a positive-definite quadratic form.
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Prove that

— z2,y1 — Y2)
(6.0)

� (cc —

for all real numbers

Solution: First we tiote that cc b2 > 0 as f is postlivo-defiiiile. We

I lit ity

+ 2bx1y1 + + 2bx2y2 +
(6.1)

+ bx1y2 + bx2y1 + +(ac — b2)(xiy2 - x2:qj)2.

Set
Ej=f(xi,yi)�0,
F = cx1x2+ hx1y2 + bx2yi + � 0,

and then (6.1) becomes

(6.2) E1 F2 + ((IC — —

We also have

(6.3) f(xi — x2,y1 112) = Fi + F2 ± 2F.

Hence, using (6.2) and (6.3), we obtain

— X2,yl —112)� + F2 — 2F)
� (F2E2)"2(2(E1 F2)"2 — 2F)
= 2(E,E2) — 2(E1E2)'12F
= 2F2 +2(ac—b2)(x11p2--x2yj)2

—2F(F2 + (cc — b2)(x,y2 —
= 2F2 + 2(cc — b2)(x,112 — x2y,)

—2F2 (i +
(cc — b2)(x,y2 — x2vi )2) 1/2
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� 2F2 + 2(ac — - x2yI)2

2F2 +
(cc b2)(x,y2 — x2y1)2

2F2
— (ac — '2y1)2

This onipletes the proof of (6.0).

7. Let be three reai iiIiflLb('rs, not Ill (lie same. (1vc a condi-
I )II WJ)i(lI IS -:1 I isli'd hr lie ni % nm I he th ri iles

I (R,S,'J'),
(7.0) (7',—S-i-2T,R—S-FT),

(. (R— S+'i',2R - S,R).

Solution: We let (a,h,c) denote any oiie of the triples in (7.0) and show
that exactly one of the three triples satisfies

(7.]) (1) a<b<c or (ii) a>b>c.
We consider six cases.
Case (i): 1? � S < T. Here (o,b,c) (R,S,T) satisfies (7.J)(i) but not
(7.l)(ii), while the other two triples satisfy neither (7.1)(i) nor (ii) as

T<-S+2T, —S+2T>11-S+T

and
R—S+T>2ft—S, 2R—S<R.

Case (ii): I? < T S. Here (a,h,c) = (T,—S + 2'! .R — S + T) satisfies
(7.] )(ii) but not (7.1 )(i), while the other two triples satisfy iieither (7.1)(i) nor
(ii)as

R<S, S>T
and

R—S+T>2R-S, 2R—S< R.
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Case (iii): S < R <'I. Here (a,b,c) = (R — S + T,211 — S.R) satisfies
(7.1)(ii) but 'tot (7.])(i), while the other two triples satisfy neither (7.1)(i) nor
(ii) as

11>5. S<T

T<-S+2T, -S+2T>R--S+T.
('asc (iv): S <'I' < I?. Here (a, b, e) ('1. —5 + 27'. 1? — S + 1')
(ti )(i) but not (7.1)01), while [lie other two triples satisly non liar (7.1 )(i) nor

R>S, S�T
and

R—S+T<2R—S, 211—S>R.
Case (v): 'I' I? < S. Here (a,b,c) = (B — S + T,2R — S,I1) satisfies
(7.1)(i) but itot (7.i)(ii), while the other two triples satisfy neither (7.l)(i) nor
(ii)as

B<S, S>T
511(1

—S+2T<E---S+T.
Case(vi): T <S B. Here (a,b,c) = (1?, S,T) satisfies (7.1)(ii) but not
(7.] )(i), while the other two triples satisfy neither (7.1 )(i) nor (ii) as

'I> —S+2T, —S+2T< R-S+T

and
R—S+T<211-S, 2R—S�B.

8. Let ax2 + bxy + cy2 and Ax2 + l3xy + Cy2 be two positive-definite
forms, which are not proportional. Prove that the form

(8.0) (aB — bA)x2 + 2(aC — cA)xy + (hC — cB)y2

is indefinite.
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Solution: As + bxp + cp2 and Ax2 + Bxy + ('y2 are positive-definite
we have

ts>0, c>0, l,24ac<O,
A > 0, > J32 'lAG < 0

'lb show tlLat tho form

(eli - -I- cA)xy + (bG — eB)y2

is W(' must I htl Is (lisCrinhiflaflI

D = 4(aC -- cA)2 — 4(aL? — bA)(bC — cli)

is We first show that I) � 0. This follows as

a2D (2a(aC — cA) h(aI? — bA))2 — (b2 4ac)(aI? — bA)2.

Moreover, 1) > 0 unless

aB bA = aC - cA 0

in which case
a hcABC

This does not occur as ax2 + bxy + cy2 and Ax2 + Bxy + Cy2 are not propor-
tional.

9. Evaluate the limit

(9.0)

Solution: We show that 1, 2. For n � 3 we have

=



—

=

d.nd so

=

:2k)

I 1

=

2 ?1_21

=_2(n—1) n—i

As n +oo, + Inn 0 and so

= = 2.
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10. Prove that there does not exist a constant c � 1 such that

rncd4m),

lot- all integers n and in satisfying n � in.

Solution: Suppose ther' exis$s a constant c � I such that (10.0) holds for
all positive integers at and n satisfying n � in. Let p be a prime

tsi ,, I'. Tien, hay'

2(p1) (asp>4c�d)

(as (p + 1)12, p — 1)

�
(by (10.0))

( p+i)

> (asp>4c),

which is impossible, and no such c exists.

11. Let D be a squarefree integer greater than 1 for which there exist
positive integers A1, A2, B1,!?2 such that

11 0 5 D + = +
( . ) (A1,B3)

Prove that neither
2D(L)4-A1A2-l-B1B2)
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nor
2D(D+A3A2- B1B2)

is the square of an integer.

Solution: Suppose that 2D(D + A1A2 + HiB2) = X2, where X is an
integer aiil ± 1. We consi(kr two cast's according ss 1) is uld

or even.
If /•) is odd, as it is squarefree, 2!) dividu X, say V 21)1', his

alL integer. aJI(1 50

D+ A1A2+€B1B2 = 2DU2.

Next we have

2D(D - A1A2 — B2) = +

2D(A1B2 — A2B1)2

— D+A1A2+B1B2

that is

2V(D — A1A2 — €B1B2) =
(A1B2 _cA2Bi)2

Since the left side of (11.2) is an integer and the right side is the square of
a rational number, the right side of (11.2) must in fact be the square of an
integer. Hence, there is an integer Z such that

2D(D - A1A2 — B1B2) = Z2,

A1B2 — EA2B1 UZ.

From (1] .3), as above, we see that 2D divides Z, so there exists V such that
Z = 2DV. Then (11.3) and (11.4) become

(11.5) D — A1A2 — (B5B2 = 2DV2,
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(11.6) A1112 = 2DIJV

Adding (11.1) and (11.5) we obtain 2D = 2DU2+2DV2, so that (12+V2
giving

(11.7) (U,V) = or (0,4-1)

Now from (11.1), (11.5) and (11.6), we have

1 +(fli 112 D(U2
—e111.42+ A1!?2 2DIJV

Solving these equations for A2 and 112 gives

(11.8) it2 = (U2 — V2)A1 — 2EU 112 = 2IJVA1 -1-
(6.2 — V2)111

Using the values for (U, V) given in (11 .7), we obtain [tom (11.8) (A2, 112)
4-(A1,EB1), which is clearly impossible as A1,.42,B1,B2 are positive and
(A1,B1) -f (A2,B2).

The case when 11 is even can be treated similarly.

12. Let Q and R denote the fields of rational and real numbers
respectively. Let K and L be the smallest subfield.s of R which contain both
Q and the real numbers

and

respectively. Prove that K = L.

Solution: We set

= 58.018,

1.

5 = + 82.591,

1. (L = 33.445.
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It is easy to check that

(12.3)

2

=
= Q(°+,°-)
2
= QU3+)
—
—

2
= Q(°+),

I
1=x2+2xy+2y2,

= =

12 1 + o)2 - 3970 +
.4) j (a+ — = 3970 —

from which obtain

( -F — o — :1

Writing for the smallest sublield ol 11. containing 1)01.11 Q and
the real numbers we have

Q(.n+)
(by (12.1))
(by (12.3))

(by (12.5))

(by (12.2))
(by (12.3))

(by (12.5))

so that K = = Q($+) = L.

13. Let k and 1 be positive integers such that

GCD(k,5) = GCD(1,5) GCD(k,1) = I

and
—k2 + 3k! — 12 = F2, where GCD(F,5)

Prove that the pair of cquatioits

(13.0)
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has exactly two solutions in integers and p.

Solution: We have

F2 — 4k2 + Ski + 4j2 — 1(k + 1)2 (mod r)

so that F ±2(k + I) (mod 5). RoplaciTig V by — I, if nocessary, we
SIIJ)p'wC

( ) 1' - 2(1. + f) (mod 5)

Then we have

4k — l — 2F 0 (mod 5),
--3k+21--F a 0 (mod 5),
k + I + 21 (1 (mod 5),

and we may define integers R, S, T by

( 511 =
5.9 = —3k-f2l—F,
ST = k+i+2F'.

Purther, we have

25(%RT—S2) = (4k—1—2F)(k+1+2F)—(—3k+21--F)2
= —5k2 + 15k! — 512 —

= 0,
so that

(13.4)

We now treat three cases:

(i)R=S=0,
Case(i): S = 0. From(13.3)wehave4k—1.-2F= 0, arid —3k+
21 — F = 0, so that k = F,! = 21. But k,l are positive coprime integers, so
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1" J,k = J,1 = 2. In this case (13.0) has two solutions (x,y) ±(0,1).
Case (ii): H O,S = 0. From (13.4) we have 7 = 0, and so from (i3.3)
we obtain

.1 —3k+21—F 0,
k+1+21 = 0,

so that k I - F. As k,l are positive coprime integers we have I = —1, k -=

/ 1. In this ease (13.0) tWi) !J) ±(J
Case(iii): 0. From (13.4) wo have RT > 0. If ft < 0 then 1' < 1) antI
we have k Ii + '1 < 0, coittiadktiiig 1. > 1. hence Ii and '1' are 1,ositive
i ntegei a. I\ ext, ohservc that

(4k—l—2t)(4k—1+2F)=(lk.--fl2—41'2 = 5(1—2k)2,

so that

(13.5) 11(4k — 1 + 2F) (I — 2k)2

Clearly, we have 4k — 1 + 2F yf 0, otherwise 511 — —4F and so 5 b', con-
tradicting GCD(F,5) = 1. Hence we may nonnegative integers a,b,c
by

(13.6) 2" II fl 2b 4k — I + 21 2C Ill — 2k.

We have from (13.5) and (13.6)

(13.7) a+b=2e

and

1

H 4k—1+2F (/—2k 2
(3.8)

2" 2b 2C

where
II 4k—l+2F 1—2k1

2"' ' 2C

are odd positive integers. Suppose that

4k—1+ 2F) > i.
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Then there is an odd prime p whidl divides R./25 and (4k — 1 + 2k')/2t, and
tk —1 — — 1 + 2F, and 1 — 2k, giving successively

pf8k—21, p12k, p1k, Pt!,
eonLradict.ing ('CI.)(k,!) 1. hence we have

(•() f)
4k -1+ 2F)

\2"

Irtnn ( and ( 13.9) we see ihal

(13.10)

for some integer X. Next we show that a is even. This is clear if a =- 0 so we
may suppose that a � 1. Thus 2 I R and so I is even. As GCD(k,l) = I we
have k odd. Then, taking —k2 + 3k! _j2 = p2 su(cessively modulo 2,4 and 8,
we gel.

Fml (mod2),

1m2 (mod4),

(13.13) l 2k (mod 8).

Thus we have 4k — 1 ± 2V 0 (iuod 4) and so a � 2,b � 2. Also we have

and so as F is odd we have iniii(a,b) � 2. If a � b then we have a � 2, which
implies that a = 2. If b < a titen b � 2, which implies that b = 2, a = 2c — 2.

In both cases a is even as asserted.
Setting a = 2d, xo 2dV, we have R = 4. Then from (13.4) we deduce

that T S = Changing the sign of x0 if necessary we may
suppose that S = xoyo. Thus we obtain 4 + = R + 7' = (5R + 5T)/5 =

R+2S+2T=!,so
that (x0,y0) is a solution of (13.0).



SOLUTIONS 67

Now let (x, y) be any solution of (13.0). Then using (13.0) we have

—k2+3k1—12=(z2+zy—y2)2,

that (with I' to satisfy (13.1))

(13.14)

Solving (13.0) and (13.14) for p2. we gel.

f .1k 1-1

Sxy = —3k+21± 1'.,
5y2 =

As

2(k + 1) 0 (mod 5)

the lower signs roust hold in (13.15), and so

I x2 =
(13.16) zy (—3k + 2! —

I. y2 = (k+1+2F)/5.

Since this is true for any solution of (13.0) we must have that (13.16) holds
with z, y replaced by Zo, yo respectively. This means that

xy=xoyo,

giving
(x,y) (zo,yo), or (—zo,—yo),

and proving that (13.0) has exactly two integral solutions.

14. Let r and a be non-zero integers. Prove that the equation

(14.0) (r2 — s2)x2 — 4r.exy — (r2 — o2)y2 = 1

has no solutions in integers x and p.
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Solution: We suppose that x and p are integers satisfying (14.0). Factoring
the left side of (14.0), we obtain

(14.1) ((r — s)z — (r + s)y)((r + s)x + (r — s)y) = 1

As each factor on the left side of (14.1) is an integer, we see that

(142) f (r—s)x—(r+s)y
(r-f s)x+(r—s)y — C,

where ( ±1. Solving (14.2) for x and y, we obtain

—SE
(14.3) 5=—, y=-r2+s2 r2.j-s2

Hence we have + y2)(r2 4- s2) = 1, so that r2 4- = 1, that is

(r,s) (±1,0) or (0,±1)

which is impossible as r and s are both non-zero, thus showing that (14.0)
has no integral solutions.

15. Evaluate the integral

(15.0) I=jinzin(1—s)dz.

Solution: The function in s in(1 — x) is continuous for 0 < x < 1, but is not
defined at z = 0 and x = 1, 50 that

'1—s
(15.1) 1 = urn I ins ln(1 —

For x satisfying

(15.2)
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aIsI(I n a positive integer, we have
0o k k 00 k—(n4-1)Z

koi k1 kn+1
.ifl(I SO

=

00
k

- 71+lL.O

Thus we have

(15.3) — x) +

� (n+1)L (_Inz)(1X)dx.
Now, for y � 1, we have

(15.4)

Taking y = 1/x in (15.4), we have

(15.5)

Using the inequality (15.5) in (15.3) we deduce

f_6
In XdZJ

— n4-1

I z0dz
fl + 1 Jo

— (n4-1)2'
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and letting n we obtain

(15.6) — x)dx —

As
d xk+hlttr xk+I

'c+i

by th fnndaiiicntal t of ealeulii,

1
(1 — In(1 — ô) (1_—j =

k+1 —

(k+1 5k+1

so that by (15.6)

6 (k+I '°
j = 1)2

—ln(1 —
(1— °° 1

k=1 k(k+1)

that is
I—S

(15.7) j lnxln(l—x)dz

= (In s)A(c) — B(s) — (ln(1 — — 6) + B( I — 6)

where, for 0 < y < 1, A(y) and B(y) are defined by

Co yk÷I
(15.8)

Co

(15.9)
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We itext show thai

(15.10) tim (In )A() = 0

(15.11) Jim (hi(1 — 6))A(I — (I

(1512) lini 11(c) ()

(15.13) Jim

so that (15.1) and (15.7) give

(15.14)

as asserted in the hINTS.
Before proving (15.10)-(15.13) we show that

(15.15) Iirn(lnc)ln(1 —) = 0.

For 0 < < 1 we have

(2 1> €,
< .L

so that
(hi C

—€1n < (1n)ln(1 —€) <
—.j-———-

from which (15.15) follows, as

(15.16) Jim lii€ = 0
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Now for 0 < < 1 we have
5 00 k-fl

=

ln(1 — () + hi(l - + (
= (1 — — () + i

that

Jim (In )A() = 0

'l'liis (15.10).
Next we have, by Abel's theorem,

so that
=0.

'rhis proves (15.11). Also we have

1i3(°)I + 1)2

so that
lisii =

proving (15.12). Fitoally, by Abel's theorem, we have

1
lirn R(1 - fi) =

=

= - (k+1)2)

=

= 2—i-,
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pioving (15.13), and arnipleting the proof of (15.14).

16. Solve the recurrence relation

(16.0)
= 1,2.

Solution: nab hr 1 1(10 Live hat o( is
) ( - I)' /(

for all positive a satisfying 1 � n in. This hypothesis
is true for rn I as a(1) = l/2. Now, by (16.0) and the inductive hypothesis,
we have

m + 1 (in + i\ ( 1)k+t

k k+1
Thus we siiust show that

(in + i\ (_i)k+1 in + 1— (_1)m
k ) k-f-i —

or equivalently

7+1
k ) k-f-i m-f-2

By the binomial theorem, we have for any real number z

(16.1) (1

= rn+I (in+

Integrating (16.1) with respect to x, we obtain

(162)
1

m+2 k )k+l+in+2
Taking z = —1 in (16.2) we have

— 1

k ) k+1 — rn+2'
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and so
rn+1 (nz + i\

— 1
— m + 1

k ) k+i - m+2m+2
as required. The result now follows by the principle of mathcmatkat
Lion.

17. Let a and k be positive integers, let p be a prune such that

p>(n'2+n +k)2+k.

Prove that the sequence

(17.0) + 1, 2 n2 + I

where I = (n2 + us + k)2 — n2 + k, contains a pair of integers + k) such
that

\pJ \ p /

Solution: As us and k are positive integers and p > (a2 +n + k)2 + k,
none of the integers of the sequence (17.0) is divisible by p. If

(ek) = I we can take (m,rn + k) = (n2,n2 + k). If (1 = 1 we can

take + k) = ((a + 1)2,(n+ 1)2 + k). Finally, if

1\PJ \ P /
we can take (rn,m+ k) ((n2 +n+ k)2,(n2 +n+k)2+ k), as

= ((n2+k)((n+1)2+k)
p 1 k p

= (n2+k\1((n+1)2+k
k p 1k p

= (—1)(—1)=l.
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establishes the existence of a pair of integers as required.

18. Let

DOeS the iI)hflilC series o8 converge, and if so, what is its sum?

Solution: Let s(iV) = , N = 0% 1,... We have

iv

s(N)
=

=
4N+4

1 rn—I 2N+2
= +

Letting N we liaw

Hms(N)
= +

—

— 2 in

3
=

so that converges with sum In 2.

19. Let a1 he rn (� 2) real numbers. Set

n=1,2,...,m.
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Prove that

(19.0) �

Solution: n 1,2,.. ,m we have

I el,, \2
I—I =\nJ \ a

2
\2

< 2a

=

and so

(19.1) +

But as

= — —

A m,A2 A2

—2 < — " I

—1 — —1

m

that is

(19.2) � n(n.iy
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Using (19.2) in (19.1) we obtain

2 m A2In

— +2 —

= +

that is

n1

The inequality (19.0) now follows from (19.3) by noting that 1— = 0 when
n= 1,and 'forn�2.n-fl — 3

20. Evaluate the sum

k=O ( )

for all positive integers n.

Solution: We have

— — n!(2n—k)! — n!(2n—k—1)!
(2) — (n — k)! 2n! (n — k — 1)! 2n!

— n!(2n—i—-k)! ((2n_k) (n—k)\
2n — 2n

2

so that

S = -
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21. let a and It be coprinie positive integers. For k positive integer,
let iv (k) denote the iniiiibcr of integral to the equation

(21.0) oj + by k, 0, y ()

Evaluate the limit
N(k)i= Inn

k—.+oo k

Solution: As a and b are coprime there are integers g and h audi that

(21.1) ag .bh—k.

Then all solutions of ax 1- by = k are given by

(21.2) = g 4- bI, y It at, t = 0, ±1, ±2

Thus the solutions of (21.0) are given by (21.2) for those integral values of I
satisfying

(21.3)

Set

(21.4) A(b,g)
= { ?: if b does not divide g,

Then there are
— — A(b,g) + 1
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values of t (21.3). Hence we have

(21.5) N(k)
—

[—i] — \(b,g) + 1

and So

IN(k) 1+1+1+1=4,
giving, by (21.1),

N(k) 1 4
('1 ——— — —

k ahk
Letting k —+ •i-oo iii (21.6), we obtain L = 1/ab.

22. Let a, d and r be positive integers. For k = 0,1,... set

(22.0) tLk = flk(a,d,r) - (a+ kd)(a +(k + 1)d)...(a +(k + r)d)

Evaluate the sum

S =
k=O

where n is a positive integer.

Solution: For k = —1,0,1,... we set

(22.1) = vs(a,d,r)
— (a +(k+ 1)d)•"(a +(k+r)d)rd'

so that

Vt — Vk+i
1 (

+ (k +r + 1)d))

= (a+(k+1)d)(a+(k+2)d).•.(a+(k+r)d)(a+(k+r+l)d)'
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that is Vt = Uk+1. Hence we have

vi n—I n—I

s = Ut = = (Vt — Vk+ i) = v1 — in
k=- 1

that is
11 1 1

rd + ...... (is + (r—1)d) -- (o + (a + I )d) (a -I- (is + r)d)

23. Let x,, be a (> 1) real numbers. Set

Let F be a real-valued function of the n(n -- 1)/2 variables Xjj such that the
inequality

(23.0) �
k=l

holds for all z1,.. .
Prove that equality cannot hold in (23.0) if 0.

Solution: Set Al (z5 + ... + and replace each by — Al in
(23.0). Then (23.0) gives the stronger inequality

hence if .. . are chosen so that 0, equality cannot hold in
(23.0).

24. Let a1,... ,a he m (� 1) real numbers which arc such that
0. Prove the inequality

(24.0) /
(,n)2
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Solution: By the ('auchy-Svhwarz inequality we have

(24.1)
-

1)2 < 1.

Next. WC have

�

We obtain (24.0) by using the latter inequality in (24.1).

25. Prove that there exist inlinitciy many positive integers which are
not expressible in the form n2 + p, where a is a positive integer and p is a
prime.

Solution: We show that the integers (3m + 2)2 ,m = 1,2,... , cannot be
expressed in the foriii a2 + p, where a I and p is a prune. For

suppose that
(3in+2)2 = p,

where ii � 1 and p is a prime, then

(25.1) p (3m + 2— n)(3ni + 2 + n).

Since p is a prime and 0 < 3m + 2 — a <3m + 2 + a, we must have

(25.2) 3m+2—n=1, 3m+24-n=p.

Solving (25.2) for in and n we get

m=(p—3)/6, n=(p—l)/2,
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so that p = 3(2m+ 1). As p is prime, we must have in = 0, which contradicts
m� 1.

26. Evaluate the infinite series

S = arctan

Solution: For n � I we have

arctan (!) — arctan arctan ()
= arctan (\(n+ 1)2

sothatforN �2wehavc
N f2\ N-i

1 2

=
arctan

+ 1)2

= (arctan arctan

arctan(1) + arctan — arctan

— arctan
\ N +1

letting N cc we get

f2\ fl\ Il
arctan arctan

and so fl\ 37r
S = + arctan(2) + arctan
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27. I,tt p,, donote 7i (� 1) distinct. iiittgeis and let f,,(x) he
the polynomial of degree n given by

= (x .. .(.r —

Prove that tile

q,,(x) = (J,,(x))2 + I

cannot be expressed as the product of two noit constant polynomials with
coellicieiits.

Solution: Suppose that g,,(x) can be expressed as the product of two non-
constant polynomials with integral coeUicients, say

(27.1) = h(x)k(x).

11(x) nor !c(x) has a real root as gn(x) > 0 for all real x. Thus,

iteither h(x) nor k(s) can change sign as £ takes on all real values, and we
may suppose that

(27.2) h(s) > 0, k(x)> 0, for all real x.

Since g,,(pj) = I, i = 1,2,..., n, we. have = = 1, i = 1,2 a.

If the degree of either h(s) or k(s) were less than n, then the polynomial

would have to be identically 1, which is not the case as h(s) and k(s) are
non-constant polynomials. ilence both it(s) and k(s) have degree n, and

3' f h(s) = I + a(s — . . — pn),
/ k(x)= 1

for integers a and b. Thus we have

(27.4) — — P2) — + 1
= 1 p,,)2.
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Equating coefficients of x2" and x" in (27.4) we obtain

(27.5)

Thus we have a contradiction as no integers satisfy (27.5).

28. Two people, A and B, play a game in which the probability that
A wins is p, the probability that B wins is q, and the probability of a draw is
r. At the beginning, A has rn dollars and B has v dollars. At the end of each
game the winner takes a dollar from the loser. If A and B agree to play until
one of them loses all his/her money, what is the probabilty of A winning all
the money?

Solution: Let p(k), k = 0,1,... , denote the probability that A wins when
he/she has k dollars. Clearly, we have

(28.1) p(0) = 0, p(m + n) = 1.

We want to determine p(m). Consider A's chances of winning when he/she
has k + 1 dollars. if A wins the next game, A's probability of ultimately
winning is ap(k + 2). if A loses the next game however, A's probability of
ultimately winning is bp(k), while if the game is drawn, A's probability of
ultimately winning is cp(k + 1). Hence we have

p(k-t-1)=ap(k+2)+bp(k)+cp(k+l).

As a + b + c = 1 we deduce that

ap(k+2)—(a+b)p(k+ 1)+ bp(k)= 0.

Soving this difference equation, we obtain

"k'—' A+Bk ,ifa=b,
"
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where A and B are constants to be determined. Using (28.1) we obtain

f A= 0, ,ifa=b,
A= —B= 1/(1

so that
J sn/(rrz + n) , if a =

' (1 ,

292 Let 1(x) be a monic polynomial of degree n � I with complex co-
efficients. Let x1,. . . denote then complex roots of 1(x). The discriminant
D(f) of the polynomial f(x) is the complex number

(29.0) D(f) = fi — x)2
I

Express the discriminant of 1(x2) in terms of D(f)

Solution: As x1,... are the n roots of 1(x), the 2n roots of f(x2) are

I/i = 7/2 ... , = ... ,

Hence, the discriminant of f(x2) is

H (vi—v,)2 H H
I<i<j<n 1�t<n<j<2n

H
n(i<j<2n

= fl H +
l<i<j<n I<i<n<j<2n

fi
n<i<2<2n

= H H +
1<i<j<n—
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H

ff +

fl

fl
22?1( — J

))J f(())( f)(f))2

30. Prove that for each positive integer n there exists a circle in the
which contains exactly n lattice points.

Solution: Let P be the point 1/3). First, we show that two (lifferent
lattice points I? = (zi,yi) and S (x2,y2) must be at different

distances from P. For if R and S were at equal distances from P, then we
would have

so that

(30.1)

As is irrationa.1, from (30.1) we see that — = 0, and hence — +
Y2) = 0, that is

(y2—vI)012+yl —2/3)=0.

Since and V2 are integers, we have Y2 + yi — 2/3 0, and so =
contrary to the fact that and S are assumed distinct.
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Now let n be an arbitrary natural number. Let C he a circle with centre
P and radius large enough so that C contains more than n lattice points.
Clearly C contains a finite number m (> is) of lattice points. As the
from P to the lal tire points are all difFerent, we may arrange the lattice points
insi(le C in a sequeiicc P2 according to their increasing distan(es
from P. Clearly, the circle C,, with centre F, passing through contains
exartly lal L1CC points.

31. . lel U be a gi i iteJ.!(r. I )'i the nu nihir
5(n) of solutions of the equation

(31 .0) x + 2y + 2z = n

in non-negative integers x,y,z.

Solution: We have for Ill < I

= (1-l-t+t2+.•)(1+t2+t4+..)2

(1 -— t)(l — t2)2

(1 —t)3(J +t)2
3/16 1/4 1/4 3/16 1/8

= 1+(J t)2
+ +

J+t
+

(1 +t)2

=

IX15+2)tn +

+ 1)t"

16
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+ 1))t"

giving
n(n + 6)- + 1 , ii a is even

(n+1Xv+3)
,

32. Let n he a fixed integer � 2. Determine all functions which
are bounded for 0 <z <a, and which satisfy the functional eqiation

f(x) (i + + ... +
+(n_1)a))

Solution: Let f(x) be a bounded function which satisfies (32.0) for 0 < x <
a. As f(x) is hounded on (0.a) there exists a positive constant

h such that

(32.1) If(x)I < K, 0 < z <a.

For s 0, 1,. .. , a — 1 we have

0<—<a,
a

so that by (32.1) we obtain

Q<s<ii—l, 0<s<a.

Then, for 0 < x <ci, we have from (32.0),

f(x)I < K + K f... + K),
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that is f(x)1 < K/n. Repeating the argument with the hound K replaced by
11/71, we obtain

f(z)I < 11/712, 0 < x <

Continuing in this way we get

(32.2) f(z)( < K/n', 0 < x <a,

for 1 0, 1 atd 1 i (:32.2) J!ives fec) = (1 fir (I :r < (1.

33. Let I (lenote the closed interval ju,b], a < h. Two Iurwtnuis
f(x), q(z) are said to be cornplckly diffsrent on I if 1(x) y(x) for all x in I.
Jet q(x) and r(x) he functions defined on I such that the differential equation

has three solutions y1(x), y2(x), y3(x) which are pairwise completely different
on 1. [1 z(x) is a fourth solution such that the pairs of functions z(x), y,(x)
are completely different for i = 1,2,3, prove that there exists a constant
K (1,1) such that

(330) — — Y3) + (I —

K)

Solution: As P1, p3, z = p4 are pairwiso completely different on 1, the
function

1(x)— (v Y2KI/3 Y4)

— !h)(Y2 P4)

is well-defined on 1. Also, as Y1'Y2,Ya,Y4 are differentiable functions on 1,
f(x) is differentiable there and its derivative is given by

g(x)1(x)-
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wheic

g(x) (i4 — — Y3)(Y2 — —

(Yi — 1/d)(!J3 — ys)

— (#5 !12)(?Il — — —

+ (Yi — — — — ii,)

I qii, 4 r, I 7. I

we have

g(x) = ((yl+y2+q)—(yl +y3+q)---(y2+714+q)+(y3+y4+q))
(m — 7J2)(?Ji — — Y4XY3 #4)

that is g(x) = 0, and so f'(.r) 0, showing that 1(x) = K on .1 for some
constant K. Finally, (33.0) is obtained by solving (33.1) for z = K 0,1

respectively.

34. ,,, a 2,3 denote the number of ways the product
b1b2 . . . b,, can be bracketed so that only two of the are multiplied together
at any one time. For example, = 1 since b1b-2 can only be bracketed
as (b1b2), whereas (53 = 2 as b1b2b3 can be bracketed in two ways, namely,
(b5(b.2b3)) and Obtain a formula for os,.

Solution: We set 1. The number of ways of bracketing b1b2 .. . is

N(1,i) + 1, a + 1),

where N(i,j) denotes the isumber of ways of bracketing . . . if i < j,
and N(i,j) = 1, if i = j. Then

(34.1) t5n+1 = + + + + ii 1,2
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Set

(34.2) A(x) =

From (34.1) and (34.2) we obtain

=

= L (40
y11

=

= A(z) —

that is

(34.3) A(z)2 — A(x) + z = 0.

Solving the quadratic equation (34.3) for A(x), we obtain

A(x)=

As A(0) = (I we must have

(34.4) A(z) = (1

By the binomial theorem we have

(34.5)
=

so that, froirt (34.4) and (34.5), we obtain

(34.6) A(x) =
(1/2)(4)flfl
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Equating coefficients of (n � 2) in (34.6), we obtain

a,, = _!(1/2)(_1r22n

= (1/2)

(—1)"

(tEal 1

1.3.5...(2n—3)
-2 , n�2.

n.

35. Evaluate the limit

(35.0) L I tan(ysinx) dx.
y—.o y Jo

Solution: We begin by showing that

(35.1)

We set
f(t)=(tant—1)/t3, 0<t�1,

and deduce that
f'(t) = g(t)/14, 0 < I � 1

where
( g(t) = ttan2t — 3tant +3t

g'(t) = — sin 21).

Hence g'(t) >0,0<1 I, which implies that g(t)> g(0)= 0,0<1 � 1. We
deduce that I is an increasing function on 0 < I 1, so that

f(0+)�f(t)�f(1),
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that is

�tan(1)-1, O<t� 1.
Since tan(1) <tan(ir/3) < 2 , we have

taft —
0< �1,

which completes the proof of (35.1).
ForO<x�irand0<y<Iwehave0<sinz<landso

(35.2) 0 � ysinx � 1.

Hence, by (35.1) and (35.2), we have

ysinx � tan(ysinx) � ysinx +(ysinx)3,

so that

(35.3) 0< tan(ysinx)—ysin
� y2sin3x.

Integrating (35.3) over 0 x ir, we obtain

(35.4) 0 (tan(ysinz)— ysinz)dz � y2j sin3x (IX.

Letting y —+ 0+ in (35.4) we deduce that

him '--f (tan(ysinx) — ysinx) dx = 0,
0

andthus
urn ! I tan(ysinx) dx = I sinx (Ix,

Jo

that is

(35.5) him i- I tan(ysin x) dx 2.
y-.O+ y Jo
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Replacing y by —y in (35.5), we see that

(35.6) lirn!j tan(ysinx)dx-=2,

also. Ikuce, from (35.5) and (35.6). we find that 1, = 2.

36. Let be a real iiumber with (1 e <. I. ('rove that there are
infinitely many integers n for which

cosn � 1 —

Solution: According to a theoem of Ilurwitz (1891): if 0 is an irrational
number, there are infinitely many rational numbers a/b with b>

o and GCD(a,b) I such that

a 1

b

As is irrational, llurwitz's theorem implies that there are infinitely many
rational numbers n/k with k> 0 and GCD(n,k) = 1 such that

or equivalently

(36.1) — itI <

Let 0 < 1. We consider those integers mm and k satisfying (36.1) for which
k > There are clearly an infinite number of such positive integers
k, and for each such k there is an integer n such that — nl For such
pairs (n, k) we have

1—cosn < Il—cosni
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/ / n
= 2 SilL Sill

<

2

'21:7r

K 1,

tat (:lt (1) or iiiliititdv Itially is.

37. Determine all the functions 1, which are everywhere differentiable
and satisfy

(37.0) f(x) + 1(y) = .,
(x+P)

for all real x aud y with 1.

Solution: Let satisfy (37.0). Differentiating (37.0) partially with re
spcc.t to each of x and y, we obtain

(37.J) f'(x) =
1'

and

(37.2) (x+!/)

Eliminating common terms in (37.J) and (37.2), we deduce that

(37.3) (1 + 'r2)f'(x) = (1 + y2)f'(y).

As the left side of (37.3) depends only on x and the right side only on y, each
side of (37.3) must be equal to a constant c. Thus we have
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and so
1(x) = rarctanx + d,

for sonic constant d. however, taking p = 0 in (37.0), we obtain f(x) + 1(0) =
f(.r). so that f(0) 0 and d — 0. Clearly 1(x) = rarctan.r satisfies (37.0),
and so all solutions of (37.0) arc given by

f(:r) -

i- is a constant.

38. A point X is chosen inside or on a circle. Two perpendicular
chords AC and BD of the circle are drawn through X. (in the case when X
is on the circle, the degenerate case, when one chord is a diameter and the
other is reduced to a point, is allowed.) Find the greatest and least values
which the sum S = lAd + IBDI can for all possible choices of the poini
x.

Solution: We can chx)se an (a, y)-coordinate system in the plane so that
the centre of the circle is at the origin, BD is parallel to the

a-axis, AC is parallel to the p-axis, B lies to the left of D, and A lies above
C. Let X denote a point (r,s) such that

(38.1) + < 112

where I? is the radius of the circle. 1'hen the coordinates rif the points
A,B,C,D arc

respectively. Thus we have

Ad = BDI = — q2

and so
S(r,s) = IACI -I- IBDI = 2( + s2).
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We wish to Find the maximum and mijiimum values of S(r, s) subject to the
constraiitt (36.1).

First we determine the maximum value of Sfr,.s). Clearly, We have

+ VIR2 —

this proves that

max .S(is) = S(O.O) — .1!?'.fl2

linally, we determine the ntiiiiiiiuiii value of Sfr, s). have

+ = -- (r2 + s2)4-

� 2R2 — + s2)

� — (72 + s2) -I- (r2 4
c2) —

=

so that
+ � R.

This proves that

mm S(r,s) = S(±ll.O) S(O,±R) = 2R.

39. For IL = 1,2,... define the set A,, by

A J {O,2,4,6,8,...},
if n 1 (mod 2).

Is it true that

An4.k) = Aflfk) .1
k=i n1
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Solution: We set X = {O,2,4,6.... ) and Y = }. Clearly, we
have

A, C C C C U/14fl4J

12 A1 \

I have for : .2.

$fl fl /tv+k fl fl
k=)

n I (nud 2) n (iixd 2)

where

A7 12, if n a 1 (mod 2)

and -o

= U(XnB7

= 137)

n2741)

xnY.
On the other hand, we have

U U A74k
1=1 k=1 k—71

i I kafl (znd 2) nl kal (mod 2)

= XuY
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for all n 1, 2 ,...,so that

ñ =

Hence, we see that

,Q
(0

as 2 to \ Li (10(5 (lOt. belong to 11

40. A sequence of repeated independent trials is perfolne(l. Each
I rial has probability p of being successful and probability q = I p of failing.
'Flie trials are continued until an uninterrupted sequence of it successes is
obtained. The variable X denotes the number of trials required to achieve
this goal. If Pk = Prob(X = k), (letermine the probability generating function
P(i) (lefihled

P(x) = Pt
k=O

Solution: Clearly, we have

0 , k —0,1 a— I
p" ,k=n,
(J7/' ,k=(n+1),(v+2) 2n.

For k> 2it we have

Pt =- Prob(A) Prob(l1) Prob(C')

where A, /3, C' represent events as follows:

(A) 110 a consecutive successes in the first k — a - 1 trials;
(13) (k -- a) (II trial is a failure;
(C') a successes in last n trials.
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Then Pt = (1 — Prob(D))qp", where D represents the event of at least one
run of n consecutive successes in the first k — n — I trials, that is

k—n—-I

>

Hence we have
k-n—I

P(x) = p?(.rP& + + + F >.i (1 - >
k2n+I ink

8.11(1 S(I

00 no k—n--iP(x) k—= 1-i-q(x+..+x)+q x —q
k=2n-f I k=In-f 1

1 + +

=
ci TX±qx)

—

= (1—r+qx)

=
—

=

= (1
qx

'

that is
— (I—x-i-qx) P(x)

(1 — x) (1 — x)
so that

1 — z +
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41. A,B,CJ) are four points lying oii a circle such that ABCD is a
convex quadrilateral. Determine a formula for the radius of the circle in terms
ohs = IAIII,b= BCI,c— ICDI and (1 IDAI.

Solution: We first psove the following result:
radius of the circumcirclc of a is given by

Iinn
(41.1) P =

4-fl? —nX?—m+n)(—1 4- in 4-n)

where
l=IMNI, sz='LMJ.

Let C denote the circumcentre of so that LCI = MCI = INCI = P.
Set

fi=LNCL,

so that o + f3 + = By the sine law applied to we have

1_ P
sino — sin((ir —

so that

= 21?sin(o/2).

Similarly, we have

m = 2lisin(fl/2), n 2lisin(7/2).

Thus we obtain

= sin('y/2)

= sin(lr-
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Ia 3

= sin(a/2)cos(i3/2) + cos(o/2)sin(8/2)

= _L m2
+

21? V 11?' 2R \f

and so

rn" I

I

I I -

and so

— = (n2 — j2 rn2) +

Squaring again we find that

412m2 (i
— —

— (it2 —

2 2+ - in ),

giving, after sonic simplification

2 2 2 2(n—1 —in )—41 ni

which establishes (41.1).
Returning to the originai problem, we set x NI, and 9 = /4 BC, so

that /CDA = — 9. By the cosine law in and we have

(41.2) = + 1,2 — 2obcosO
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(41.3) = + d2 — 2cdcos(ir — (1) c2 + d2 + 2rdcos 0.

x2 Iioii, (.11.2) and (-1 .:fl. we obtain

/)2 c2 12

2(ah 4 i:i/)

this xPIvsstolI ha cosO in (1.2), we get

2 (u + (/2)
i - b (Lb

(n/i 4- c-d)

(cc + hd)(iul + he)
(nb+ed)

so that
- /(oc + bd)( od 4- he)

V (ob+cd)
The radius r of the circle passing through it, B,C,D is the circumradins of

BC, and so by (41.1) is given by

-j- x)(n + b .f- b + x)
obr

— —- (a — b)2)

Next have

(a + b)2 — -= (ci -i. b)2
— (cc + bd)(ad + be)

— oh ((a + b)2 — (c -• d)2)

— (ab+cd)
— ab(a4-h—e+d)(a+b+c—d)
-- (cb+ed)

and similarly

— 1 a —
1))2 — ah(—a + b +c-i-d)(e—b-i-c-j-d)

— (ob+cd)



SOLUTIONS

so that

/ (ab4-ed)(a: bd)(adjbi:)r_V(,b÷, tb—c Fd)(n+bfc rI)

42. L',i II( I) he tX iiad lil.Lt (Oil. I eL V lie ),)i III tJIII 0(10

.4 BC!) 511(1! that A — Pfl and / 1 P/I .. points (2, 1?. S ate
si nil at lv (till tied - Prove i 1 I Iettgt ii at1
perpeidicilar.

Solution: We consider the quadrilateral AIJGJ) to be in the (:on1ikx plane
and denote the vertices A,B,C,/) by thii complex initnl,e-s a,

t, c, b. Thiei the midpoints 1-1,K,L,M of the sides IIC,CD, BA are
represented by (u F t)/2,(t. } c)/2,(c F d)/2,(d f a)/2. Let p represent lie.
point P. As P!! I = 113111 and P11 1 13!! we have

(aFb))

so that
p= lit).

Similarly, we find I hat

q (b lie).
r = (c lid),
S =

From this we obtain

p-r = i(b—d)).
— ((b— d) I. i(c— it))
= ((a e) I i(b _d))



SOLUTIONS 105

sc thai. q — — —i(p — r), proving that IPR1 = 1Q51 and PR I QS.

43. l)ofruuine polynomials p(x, y. w) and q(x, y. w) with real
('4IiCJN,t' :iu(:li that.

(.13.0) (xy -I- 1 v)4 —. (.,.2 2:)(y2 2w)

— ( pLc. i,.:. a' ))2 (r4 2: :r, •

Solution: We seek a solution (>1 (43.0) of the fnriii

1) 5 p(.c, p. 2. a) + .Y

ij(x,y, ;,w) p 4 V

where X and Y are polynomials in x,w, and z. Substituting (43.1) (43.0)
511(1 simplifying, we obtain

(43.2) ((: ia)2 I
2z2w)

1- 10)11

= (X2 -— (x2 .- 2z)Y2) 12 — (x2 22)1)

which gives

(13
5 )2 (x2 — — (z — ia)2 2:r2w

/ 1. .rX — (x2 2z)Y a).

From the se(ond equation in (43.3) we have

= — 2z)Y I 1 w))

and, using this in the first equation in (43.3), we obtain alter simplification

zY2—c(2 I w)Y I x2w=0.

Solving for I we find i fiat V = xw/: or V = x. Discarding (he first solution
sis we are seeking polynomials X and I. we have

X = — f w, V = s
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anti we may take

44. J,et C tknote flit lidd El, I : C C a

fuiit tion

1 If(z) - = z

for all z in C and w = 0, 1, i. that

1(z) f(1)z or

where 11(1)1 = I.

Solution: horn (.14.0) WE have

(44.1) If(z)I =

(4421 If(2)—oI—Iz—ll,

(41.3) 1(z) = —

which hold for all z in C, and where

(44.4) 3—f('i)

Taking = 1, i in (44.1) and z = 4 in (44.2), we obtain

(44.5) = = 1, ci — =
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Hence, we have

+ .j2 +

z + — (x
--

(r.'3 + f3J2 — 2)

-I- 1 .2)

so that

(4'l.G) fl=a, c=d-i.

Next, squaring (44.2) and appealing to (44.1) and (44.5), we obtain

(4'1.7) z

z in C. Similarly, squaring (44.3) and and appealing to (.14.1), (44.5)
and (44.6). We obtain

(44.8) — nf(z) —iz aZ.

Adding (4.1.7) and (44.8), we deduce that

that is, a.s (= fi, z or Hence we have

or

where 1(i)! = 1, and it easy to check that both of these satisfy (44.0).

45. If x and p are rational numbers such that

(45.0) tan irx =

prove that x k/4 for some integer k not congruent to 2 (mod 4).
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Solution: As x and y are rational numbers there are integers p, q, r, s such
that

f x=p/q, y=r/s, q>0, s>0,
GC D(p. q) GCI)(r, s) 1

The equation (45.0) becomes pr
tan =- -

q S

\Vc appealing to DeMoivre's theorem.

(s+fr\" — (1-i-ir/s'\"
'\s—ir) —

— (1+itan(irp/q)\1
—

— (cos(irp/q) +
— isin(irp/q))

—

cos(irp) — isin(irp)

— (
— (—J)P—iO

so that, appealing to the binomial theorem, we have

(s + ir)9 (s — ir)9

= ((s-j-ir)—2ir)"

= +

Hence, we have

(—2ir)9

= —(s + +
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that is

(45.2) (s + ir)(x + iy),

for integers x and p. Taking the modulus of 1)0th sides of (45.2), we
obtain

= 4
7/2)

Itt be an odd prirnu dividing s2 + ).2• Then p divides anti SO 7) (liVideS

r. Thus p (liVid('S 52 + r2) — that is, p divides s lbs (ontrallicts
GCJJ(T, = 1. + 7.2 has no odd prime divisors and so must be a

power of 2, say
s2+r2=21, 1�O.

Further, if 1 � 2, then s and r ate both even, which is impossible, and 601 = 0

or 1. As $ > 0 we must have

(r,s)=(0,J) or (±1,1).

The first possibility gives s = k/4, where k = 4p, while the second possibility
gives z k/4, where k I (mod 2), thus completing the proof.

Second solution: (due to R. Dreyer) We ntake use of the fact that there
are integers c(n,r), sz = 1,2,... ; r =

such that

[n/2J

(45.3) 2 cos nO = c(n, r)(2 cos

for any real number 0. The integers c(n, r) are given recursively by

c(1,0)= 1, c(2,0)= 1, c(2,1)= —2,

and for n > 3

(
c(n,0) =1,
c(n,r) =c(n—1,r)—c(n—2,r—1), I

c(n,n/2) = n even
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Now, as z is rational, we may write x = p/q, svheie GCD(p,q) 1 and q> 0.
Further, as y = tan irx is rational, so is the quantity

(1 — tan2 irz) (I
. —2—

(l+y2)
Appealitig to ('15.3). with 7L — 'j and 0 = 2irx — 2irp/q, we see that is a
rations I on 1. ol I lie flOJli( inL(graI nomial

c(7i, rpc"

hence, z nuist be an integer. But IzL = 21 COS 2irxl < 2 so that 2 = 0, ±1, or
±2, that is

cos(2irp/q) = 0, ±1/2, ±1,

giving
2irp 2 it

= (21-F (31± lit

for some integer 1. Thus, we have

p 21+1 3/±1 1

6
or

Only the first possibility, mid the third possibility with I even, have y tan mx
rational, and hence x k/4. where k is not congiuent to 2 (mod 4).

46. Let P be a point inside the triangle ABC. Let AP meet BC at
1), HP meet C.4 at F, and CP meet A 13 at F. prove that

PAL mi IPBI iJ'CI PCI PAL
(46.0)

PEt + PEt 1PF1
+

FF1 IPDI
� 12.

Solution: Let 5, St,S2, denote the areas of
respectively, so that S = + 52-1 Since and
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share the side BC, we have

API —

P1)1 —

so I hidt.

Ill — I!'!)! —
I!'flI

S St
S 5 5

Si dy we

— 8, -1 +
— 83

WC have

PAl Pill Pill IP"l PCI PAl
PD I1'!1

+
IF'11 P11

+ "I
($24 -1

+
.S2)(.S2 -4-

&s1S2

Is1 .s3 \ Is3I-++ ;-+I+ +-. +L+
\ .S1 S2j \52 "3 •S2.Sa

'52
41 4 —+14 2

\53
— (S3 (.53 b2\ .52

- \52 Si

� 12,

by the arithmetic-geometric mean inequality, which completes the proof of
(46.0).

47. Let 1 and is he positive integi'rs such that

1<I<n, GCL)(l,n)=1.
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Define the integer k uniquely by

I < k < -n, ki —I (stied n)

Let !t! LU.' the A :< 1 thaI IX (1,3) I h nIuy is

(i— I)! +i

LOt. /V hi' I hi. A x / iui;iI uix termed taking I he colt ol M in level se o,der
and uvj I jug otiti let. as (lit' roWs (>1 \ . \'Vliat is lie r"la( intialtip hit weep
In' lit itut iv ol Al :uuuul hi ii.j I, 'iii iv 1,1 \' ,itouliilo

Solution: If .4 — k x I uialtices, We writ( A
11 (mod n) if (rued n), I — 1,2 , j = 1,2 1.

As kI — I (mod a) we haVe module n

I 2 1—2 1—1 1

1+1 142 . 21—2 21— 1 21

2! + 21 .i- 2 ... — 2 3! — 1 3!

k-- 1)1+1 (k i)1-i-2 ..- kl—2 k!- 1 H

(1:1 - (k - I))! (kl — (2k — 1))1 :.. (2/ + 1)! (A + 1)1 1

(H (k — 2))/ (ki — (2k — 2))1 ... (2k + 2)! (A' + 2)! 21

(kl—(k--3))l (kl—(2k—3))1 ... ('2k+3)1 (k+3)1 3!

(ki)! (H A)! . . 3k! 2k! ki

from which it is clear that lie (i,j)—th entry of N is I times the (i,j).tlu entry
of M mothilo a.

48. Let iii and a be integers such that 1 as < a. let i

2 in; j = 1 ,'2 a, be ma integers which are not afl zero, and set

= maX
1<1<i"
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Prove that the systeni of equations

(111X1 -F + ± (!1,,W,1 0

-(- 1 • + =. 0
(.18.0)

(ZnLX$ + (Zni2Z2 + + = 0

has a .olu lois in Integers 1: , .r2 -c, , not all ts9o, Sal

211(1) , I j

Solution: We s('t
N

So that

N > (2na)—" — 1, implies (!V -I- 'r > (2na)"

11(70cc, we have

(JV+ 1)' > ()rw)"(V + 1)"

= (2naN + 2n0)m

'.bat iS, as (L 1,

(15-1.1) (N 4- 1)) > (2naN 4- 1)"

Set

L1 = l'i( 1/2 Ya) — yu + 1

for I i < in. If 1/7) is a vcctor of integers satisfying 0 y3 N,
1 j < a, the corresponding vahic of L1 J.j(5Ji,y2 I < i rn,
satisfies

— caN < < I < i < To
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and so the vector (L1, L2 • of integers can take on at most
(2n.uN -1- (lillerelut values. As there are (iV + l)7t choices of the vector
(Y1.Y2 by there must be two distinct vectors

ii— v = (;:j, z2

say, giving rise to the sanie vector L7). Set

1 < j < ii

A lie iF anti kilt (list lit I. titti ill III' .tj tIt, 1(10. Mui cover. is

L,(y1,y2 1 < i < rn

(x1,:c2 is a solution of (48.0). Finally, < IV, I j n, follows
from the fact that 0 < p;,zj < 1 � j it.

49. 1,iouviile proved that if

f
is an elenicictary function. where f(;c) and g(x) are rational functions with
degree of q(x) > 0, then

J =

where hfr) is a rational funetion. Use liotivilk's result to prove that

I _2
J

(LT

is not an elementary function.

Solution: Suppose that dv is an elementary function. Then,
result, there exists a rational function IL(c) such that

J dx It(x)
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we have
(1 2 2(h(x)Cz ) =

(IX

SO

(49.1) — 2xh(x) —

.'ts a ii. iliii( IIIIII W( hut-V wiilu

q( .u;

where aJLd q(x) are pulynorniak with q(x) not id"ruticallv zero, a.n(l

(JCD(p(x),q(z)) = 1. Then

(49.3) h'(X)
q(X)

aid using (49.2) and (49.3) in (19.J ), we obtaiti

(49.4) — -- 2Xp(r)qfr) = q(x)2

If q(X) is a constant polyuuouruial, say k, then (49.4) becomes

p'(r) — 2Xp(X) k

which is clearly impossible as the degree of the polynomial on the left side
is at least one. Thus, q(x) is a non-constant polynomial. Let c denote one
of its (complex) root,s, and let m (� 1) denote the multiplicity of c so that
(x — cr q(x). Then, we have (x — q'(u), and horn ('19.4) in

the form
p(r)q'(x) = (p'(x) -— 2xp(x) — q(z))q(x)

WO see that (x c) I p(X), which contradicts GC1)(p(x),q(x)) = 1, and com-
pletes the proof.

50. The sequence a-n, 21,... 18 by the conditions

:c, I-
(.O.O) So 0, Xj = 1,

=
, ti > 1 -
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Determine.
L = Jim z,,.

Solution: The recurrence relation can be writtesi as

— Zn — ), ii � I

So that

(50.1) — = — Zø) n � i

The equation in (50.1) trivially holds for n =- 0. Hence, for N � 1, we have

N—i

ZN =

— n=O

and so

L— urn = urn >
n=O

n + 1
OQ

—
n+ 1 '

that is L = 1n2.

51. Prove that the only integers N � 3 with the following property:

(51.0) if I <k < N and G'CD(k-, 1V) = 1 then k is prime,

are
N = 3,4,6,8,12,18,24,30.
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Solution: It is easy to check that 3,4, 6,8, 12, 18,24, 30 are the only integers
121 with the given property. Suppose that X > 121 is su

integer with the property (51.0). Define the positive integer a � 5 by

51.1) � 'IN
ho /.-tb wino. From (51.1) we see that < N ,j

I ,2,..., ii, and so by pJoI)orty (51.0) wo imist have A, for j 1,2

As ps,... ,p,, are dlStin(t primes, we must have

(51.2) PIP2 ..

and so, by (51.1) and (51.2), we have

(51.3) p, <N

By Bertiand's postulate, we have

� 2p,, �
aiid so

(51.4)

Using the inequality (51.4) in (51.3), we obtain

P1P2 /8 <

that is < 8. Since 6. and pjp2p3 = 30, we must have
a — 2 2, and it � which is impossible, proving that there are no integers
N > 121 with property (51.0).

52. Find the sum of the infinite series

111 1 1
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Solution: by observing that1111 1

— 14+69+1114+

J
— j" + — •)

[p j' I
Jfl •..) (11

,i i —

= I —dx
Jo

1

= f clx.

Now, decomposing into partial fracliona, we have

i x + i (0 b

x44x3+z2+x+1 x2+cx+L
where

'I'tiiis, have

S = + hId,

where çl dx 1' dx
1

= Jo x2 4 cx -I I Jo 4 dx 4 1 -

Now
f dx I

/ x2 4 2/x 4 =
arctan <1,

and by fundamental I Locorern of calculus, we have

f' dv 1 1 f141\
=

— arctaio

= —-a-rctanl I—VH'
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Hence, taking I = (1 — and 1 (1 we obtain

V r
arcian

I
1,, —

— arcian I — — -

V

So that

ioS( ir/lO)

tan(7r/1O) .-:

sin( = (v's —

siu(3ir/lO) —- ( -1-

tan(3ir/lO)
—

1!eiicc, we find flint

and so

-
"- t0V5

r /10
Id

!0v

-- lOt)
I. —

=

=

=

as
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53. Seuticirdes arc drawit externally to (ho sides of a given triangle.
Ihe lengths of the common tangents to these sernicireks are 1, in, and n.
Relate the (Itiantity

ire mn ni
1- +

?, I n:

to tilO leugi Its of the sjdcs of the tiiitiigk.

Solni ion: I Pt he en of giv('I1 niangle he .4, II. ( . Jet - t'. 13'. (7'
I 1w nit-— J he 5(flti(Ifl ?3_ (hI.IM 0 (tI !I( ,( I - IF!

iveh. I el DL, 1G. 11 J ho- the (-olilmoli tango-tots to 13 and ) , y and
n SIo(l ji TeSj)ertiVely. Join I3'D,C'E and draw C'I( from C' perpendicular to
13']). hence, as kC'E1) is a rectangle, we have KG' = 1)1-i = 1. let

11131 2c, = 2a, =- 2b.

have
IJ'Ki=Ih-cI,

—

I1MI ii
I = -b+c)(nFh—e).

Sitotilarly. ws- have

f no
v 111.11

itntl 50
inS? RI ISa
— =-—n-Fb-Fc, =a-b-Fc. —=a+b—c,

1 in n

giving

inn ul Isa
(53.1) - -F — -F — n

I in ii

so (hat the left side of (53.1) is the semiperiinctcr of the triaughe.
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54. Determine all the functions 11 : ft having the properties

(i) 11(1,0,0,1) = 1,

(;i) !f(Aa,h,Ac,d) — AH(a,b,c,d),
(iii) f!(a,b,c,d) — —11(b,a,d,c),
(iv) 11(a+,b,c+f,d) H(a,b,c,d)-F lffr,b,f,d),

wliete (I, 1J,(:, (1, , f, (.11 numbers.

Solution: Ily (lilt we have

= —11(1,1,0,0), 11(0,0,1,1)=- 11(0,0,1,1),

so that

11(1,1,0,0) II(0.0,J,1) 0,

and from (i) and (iii) we have

(51.2) 11(0,1,1,0) —11(1,0,0,1) —1

Hence, we obtain

if(a,b,e,d) — 11(a,b,0,d') -I- 1I(0,b,c,d) (by (iv))
aiI(1,b,0,d) -I- cII(0,b, 1,d) (by (-ii))

— —aJI(b, 1.d.0) — cJl(b,0,d, I) (by (iii))
—a(1I(b.1,0,0) i-/1(0,1,d,0))

—c(1I(b,0,0, 1) + !I(0,0,d,l)) (by (iv))
= —abH(1,1,0,0)—a411(0,1,1,0)

—bcII(1,0,0,i) — cdlf(0,0,1,l) (by (ii))
= —ab(0) — ad(—1) — hc(1)— cd(0)
= ad — bc,

that is

J1(a,b,c,d) =
- c d
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55 Let . he the complex roots of the equation

+ + =

(Si . . 1?, ar( " ( � L ) (t)ii)!)l(X Set

A max

Prov t hat
� 1 1 / i,.

Solution: Set
f(z) — + I +

and SIIpPOS(' that one of the 1 � S iz, 15 such that > i .4. Then
havE'

O=If(r,)i I

fLj IL
= 1+1 "'I

>

(i

I

— (A -Fl))
—. z2

I)
> 0,
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which is impossible. Thus all the roots z2, � j � ii , of 1(z) must satisfy
< 1 -1- A.

56. TI vi and n are positive integers with in odd, determini!

il— GC'1)(2m — 1,2" 4- E)

Solutiozi: Define integers k and I by

I kd, 2" 1 = 1(1

azid thou we obtain
2" kd 4 1, 2" = 1(1—

and so lou- integers and I we Ia ave

f 2"' (kil 1)" = sd + 1
2"" = (Id — I)"' = Id -. I , as vu is odd.

Heuuce, We have (s — t)d — —2, and so d divides 2. But dearly d is odd, so
that (I = 1.

57. If f(z) is a nornial of degree 2rsu I with integral coefficients
for which there are 2m I- I integers k1 I such that

(57.0) f(k1) = ... = = I

prove that 1(z) is not the product of two non-constant polynomials with
integral coefficients.

Solution: Suppose that 1(x) is the product of two non-constant polynomi-
als with integral coefficients, say

f(:c) = q(x)h(x)
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where r = deg(g(x)) and s deg(h(x)) satisfy

i+s2iit+l, l<i<s<2in.
('Jearly, we have r vi. Now, For i -= 1, 2 2m + 1, have, from (57.0),

1 — 1(k) —

is an integer, We must. have

g(k1)±1, i= 1,2 2ns+1.

Clearly, either + I or —1 occurs at least vi + 1 times among the values of
I < < 2in + I, and we let c denote this value. Then q(x) — ( is a polynomial
of degree at most 777 svhich vanishes for at least in + 1 values of x. Hence
the polynomial g(z) — c must vanish identically, that is, g(x) is a constant
polynomial, which is a contradiction. Thus there is no factorization of f(x)
of the type supposed.

58. Prove that there do not exist integers a.b, e, d (not all zero)such
that

(58.0) a2+5b2—2c2—Qed—3d2=0.

Solution: Suppose that (58.0) has a solution in integers a,b,c,d which are
riot all zero. Set

J vs = CCD(a,b,c,d)
a1 = a/rn, h1 = b/itt, c7 = c/rn, d1 = d/m

Then clearly (a1,bi,c1,d1) is a solution in integers, not all zero, of (58.0) with

GCD(a1, b1, d1) = I
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hence we may suppose, without loss of generality, that (a, b, c, d) is a solution
of (58.0) with GCD(t,b,c,d) 1. Then, from (58.0), we obtair,

(58.1) 2(a2 + 5b2) = (2c + d)2 + Sd2

so that 2 (mod

2

a =

X and V are integers, so that (58.1) becomes

2(5X2 + b2) 5y2 + d2

Thus we have 2b2 i12 (mod 5). Again, as 2 is a quadratic nonresidne (mod
5), we deduce that

(58.3) (iaod5).

Appealing to (58.2) and (58.3), we see that (1 b c d 0 (mod 5),
contradicting GCD(a,b, c,d) 1. hence the only solution of (58.0) in integers
15 (1 b = d = 0.

59. Prove that there exist infinitely many positive integers whidi are
not representable as sums of fewer than ten squares of odd natural nuiithers.

Solution: We show that the positive integers 72k+42, k 0, 1 ,...,cannot
l)e expressed as sums of fewer than ten squares of odd natural

numbers. For suppose that

(59.1) 72k+ 42 = + + ... +

for some k � 0, whore xi are odd integers and 1 < 10. Now,
1 (mod 8) for i = 1,2,... ,s, and so considering (59.1) as a congruence

modulo 8, we have
su2 (rnod8).
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Since I < s < 10 we must have .s = 2 and so

(59.2) 72k-f 12=

Tretting (59.2) a-c a inoitulo

4 -I- 4 0 (mod 3).

Situ tin square ol in integer is congruent to (1 or I ( mud 3). ye imuuist have
0 (mood 3). 1-'initfly reducing (59.2) modnlo 9, we oblaum the

(T,flf tOIL ii = 9 ( mod 9).

60. Evaluate the integral

(60.0) 1(k)
Sn kxcoskx

dx,

where k is a positive integer.

Solution: By time binomial theorem, we hays

(60.1) + j)k =
>

+ l)k =
I. = (cosk3 I isin kx)2 cosk

the iinagiiiary part of (e2 + 1)t is 2k sin kx r. Equating imaginary paits
in (60.1), we obtain

2k sin kx cosk x =
(k)

sin 2rx = >
(k)

sims 2rx.

Thus, using 9' dx = we have

1(k) 2k (:)
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=
— 1:.

=

61. P14)1( (Ildi
I (2,,

ii 11 l\fl

is an uitteger for ii —. t, 2,3.

Sohition: For n = ,2 ,...,we have

I (2i,'\ — 2n! 1

a + I a) n!)2 all
— 2u! ((2n I 2) (2u I 1))

— (,j!)2 a

2ii! 2iz 1

(a!)2 ,',

— 2
2n! — (271 1)!

— (it!)2 a!(n I. 1)!

— .)(211\(2fl11
— £

As and are both integers, this shows that —i., is an integer, as
was required to be proved.

Second solution: (due to S. Elnitsky) For 1,2,... we have

1 (2a'\ — 2si! I

21+1 — (v!)2n+t
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2n!
— n!(n-f I)!

2n!

n!(ri 1-1)!
((n+ 1)—n)

2n! 2n!

(n!)2 (1, i)!(n-4- I)!

(2n'\ ( 2u

id boli in ttgi'i s, (his I
7

is em i nt,cger.

62. Find the sum of the infinite series

where e.> I.

SolutioH: We have for n > I

— 1)

—

-— 2'(a2" + 1) -—

—

27

=

so that
272 21+I \

S =
— —

63. Let k be an integer. Prove that the formal power series

= I + (Z1X -f-
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has integral coefficients if and only if k 0 (mod 4).

Solution: If k 1 (mod 2) thin 1/2 is not an integer and ii!. =
2 (mod 4) tIne a2 — 1.2/8 is not an iiitogi'r. When I.

0 (mod 1), we have for a = 1,2,...

: - -

a!
l.3.5• .(2n—3) ,,

2" a!

—
(2,, —2)!

k"' •)2n—l a! — 1)!

2(

which is ati integer since k/4 is an integer and is an integer by
Problem 61.

64. Let in be a positive integer. Evaluate the determinant of the
7U x us matrix Mm whose (i,j).th entry is GCD(i,j).

Solution: Let. C1 C,,, denote the columns of mat rix We (1(1111(1

N,., t.o the matrix whose columns D, D,,, are given by

I V i= i,2,...,m— 1

where the sum is taken over those squareSt-se integers d which divide rn.
Clearly, as 1),,, C,,-. + J, where .1 is a linear combination of the I

rn 1, have
det Mm dot N,,,
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For 1 � j na, the entry in he i-th VOW of is (writing (i,j) for GGD(i,j))

— fl
p"fl.n

(u.p°—

5
—

—

)

ii n 1,

— J di(iii) , if to,
10 -1.

lfci,ce, eXJ)aiI(lil)g the (l't(rflhiflallt of its 11)-lit cctluiiitt, Wc'

(let = irs) dci —'

SO

(let 1t,f5. = tS(rn)det

huts. as (let M, — I = c5(l ), find that

clot - 1)...

65. Let I ond so be positive integers with I odd stud lot which there
are integcrs x and with

f I

1
2.2 + 8xy + 17y2.

Prove that there rio itot exist integers v. and c with

(j u24-v2,-2 2
111 — .1L lbicv 13v
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Solution: Suppose there exist integers u and itsuch that (65.0) holds. Then,
WC

5! + S(2uv v2)

so that in 5! (mod X). Hence, we must have

:r2 4- .5x2 .j- 5y' (mod .S)

U.Lt

I— iij2 (4 (mood ii)

amid so

= x2 0 (mod 2),

which contradicts the condition that us odd.

66. IMI

I I(1,,1 -- ——lrm2.23 n

Piove that coiivergcs and oleterriutic its sum.

Solution: We have

a, / — x ... 4- (—1r'x"') dx
— /

1
(i

'\ dx — I
.10 \ 1 + x ) 14- x

(—1 r1 x"
- dx.

1 4-x

Hence, for any integer N 1, we have

— '.T)' dx
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= I dx

=
Jo (1 +x)2

iiid Sc)

I '-i-ia

(LVI / dx

/1

— N+2

Letting N x. we see that converges, and has sum

ci z 1111 1 \
i i I— — dx=1n2—1/2.
Jo (1 +x)2 Jo +x (J +x)21

67. Let A 0 i � 6} be a sequence of seven integers satisfying

0= a

6 let

N, = number of (0 � i < 6) SUch that a1 i.

l)etermine all sequences A such that

(67.0) i=0,] 6.
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Solution: Let A be a sequence of the required type satisfying (67.0) and
let k denote the number of zeros in A. As a0 0 we have

k � 1, and ask N0 = aa we have k < 6. If k = 6 then it follows
that A {0,0,0,0.0,0,6}, contradicting N5 00 0. Hence, we have
I <k = < 5, and so

(67.1) Nk � I, Nt÷i ... = N6 = 0.

'[hue, by (67.0) and (67.1), wc obtain

(67.2) au • i; U,

and so

that is k = 3. This proves that A is of the form

(67.3) A = {0.0,0,aa,a4,as,3}

where

(67.4)

Clearly, we have 0 < N1 < 3. if N1 = 0 then, by (67.0), we have the
contradiction = N1 = 0. If N1 I then, by (67.0), we have = I, and
so (67.4) implies that 04 = as = 1, giving the contradiction N1 3. If
N1 = 3 then 03 = a4 = = 1 and so, by (67.0), we obtain the contradiction
o5=N1=3.Hence,weseethatN1=2sothata3.=ai=landa5=N,=2.
The re.sulting sequence

A = {0,0,0,1,1,2,3)

satisfies (67.0), and the proof shows that it is the only such sequence to do
so.

68. Let G be a finite group with identity e. if G contains elements g
and !z that

(68.0) e, ghg'
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determine the order of h.

Solution: If /s then the order of ii i 1. 'Jhu,s may suppose that
I I . We have

= çjjlsçj')g' — gh2çi1 (g/sçj—' )2
I 1

— q(q1hq')q' — )'
titti'/zti )g Y1'"Y — '1" Is

u

and 0, as 7" (, Ol)taill /1 = that IS c. titus I IIC order cf 1, is
31 Is. and 31 is prime.

69. Let (5 and h be positive integers such that

GCD(a,b) = 1, o 1; (mod 2)

If the set S has the following two properties:

(i) a,b E S,
(ii) E S iniplias x +y+ mE S

prove that. every integer > 2ab belongs to S.

Solution: Let N he an integer > 2eb. As GCF)(a, b) = I there exist integers
k arid I such that

(1k + bI

rurt herinore, aS
F f—k\ ak+bI N

= —>2,
ci UI,

there exists an integer I such that

—k I
—
b a
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Define integers a and by

u=k+bl. £'l—(ll,
an(l itegers x and y by

5 a 71 , y — v , if a -1- v I (nod 2)
— 71 b . y ' — o if it + ii 0 (mod 2)

It is easy 0 check

N — ro+yjb , x >0, � 0. a + p t (mod 2).

We show below that .S (:011-ails all integers of the form

xa + yb. a:> 0 , y � 0, .v + y I (nod 2)

conipletiug proof that. N S.
For iii an odd positive integer, let P,7, be the assertion that xa + yb C S

for all x and p satisfying

x�0. y>O, a-f-y1(rrod2), .r+y---nt.

Clearly P is true as C S by (i). AsS1IflIe that is true and consider an
integer c[the form Xa + Yb, where X and Y are integers with

X?O. Y�0, X+Y-rn+2.
As rn -i-2 � 3 at least one of X and V is 2. 'i'hon, writing Xe + Yb in the
form

f ((X—2)a-I-Yb)+a+a , ifX >2,
l(xa+O'_2)b)+h+b ,ify�2,

we see that Ao + V/i C S, by tie inductive lypotljesis, and so is trite.
Hence, by the principle of matheniatical induction, Pm is true for all odd
positive integers ns.

70. Prove that every integer can be expressed it the form a2+y2 522,
where a:, y, z are integers.
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Solution: (due to L. Smith) If rn is even, say ni 2n, then

(n - 2)2 + (2i: — 1)2 — -- 1)2,

whereas if iii edit, in 2n —f- 1, 1 hen

ft (ii + [)2 + (2n)2 -

71. 1':valuate the sum of the infinite series

Iii 2 in 3 hi 4 in 5

Solution: For :c > I we have

—l/2�x--[:cl--I/2<l/2,
so that for any o I we have

Jr — —
< J

t

< L 2

3( 2
=

< 3.

Thus, the integral

j (in x—
— N — 1/2)
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is convergent.
Now, one form of the Euler-MacLaurin summation formula asserts that ii

1(z) has a continuous derivative on 11, n] where n (> 1) is a positiv' integer,
heti

>f(k) +j j f'(z)(x - - l/2)dx.

Thking f(z) — me /z, we ol)ILin

ink — Inn +
+ j" kI /2) dr

Setting

bk 112?- —,

and kiting a 00, see that E(n) exists and has the value --i.
Fhus

Jim (E(2n) — E(n))

exists and has the value 0. Next, we have the following

2n in r in 2 In 3 In 4 In 2n-

fin 2 lii 4 In 2n\ /lit2 in 3 lii 2n
= —+ —+...+—

2 flj 2 3 2n

—

— 1 2 a (—k

=

1 1 1\ I in2n
=

I 1n22n



138 SOLUTIONS

n2(1+ .±! _litn) E(2n)).

L.clting 00. and that

- in =

winre O.57r2 I is Euinr's

c such that

I-

for ii = 1,2

Solution: For k = 0, 1,... , have

=

=

=
= 9k +1-

so that

+ +9k = .

and thus
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+ 24k2 + 9k +.i — 9k

-

hence we mar Lake a 1(1, b 24 and c = 9.

73. 1 1? liP a f)OSi Jut oger 101(1 (I, b I iii suI(Iu

((.'I)ta.b,n) —

Prove that thcre exist

a (rood a), b1 & (mod a), GGD(aj ,b1 ) =

Solution: We choose a1 to be any uuoe/°ro integer such that

(73J) (1 (rood a).

Then we set
b1 = b + ni,

where r is the product of those primes which dnide but which do not (hivide
either b or a. If there are no such primes (lien r = I. Clearly we have

= I, (rood n)

We 110W show that
(;Cv(a1,h1) = I

Suppose that GCJ)(ai ,h1) > I. 'flea there exists a pnflie q which dividc,s
both a1 and We consider three cases according as

(I) q divides b,
(ii) q does not divide h but divides a,
(iii) q divides neither b nor a.
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Case (i): As q b, q
I

b1 and b1 — b = rn, we have q rn. Now, by (73.1),

GCD(ai,b,n) = GCD(a,b.n) = 1.

q I 01 and q h we see thai q does noi divide n. Thus we have q I 7',

(;ontradicting the definition of r.
Case (ii): This case clearly cannot occur as = Ii + rn, yet q divides both
b1 and n, but does not. (livide b.
Case (iii): As q I aj but does not divide Ii or n, we have q I SflI('e. q b1,

q r and b1 = 11 + ru we must havo ', I b, Inch is impossible.
'['his completes the solution.

74. For n = 1,2.... let .c(n) denote the sum of the digits of 2".
for example, as 28 256 we have .s(8) 2+5+6 — 13. Determine all positive
integers a such that

(74.0) = s(n 'f 1).

Solution: 'Write

2" = + f... + a110 + (Zo,

where Oü,Oi are integers such that.

l<am<9; O<ak<O,

then
2" a, + + + a1 + 00 8(n) (mod 3).

and so
8(71 + 1) 2.2" 2 s(n) (mod 3).

Hence, if .s(n + 1) = 8(71), WC must have

0 (mod 3), 2" 0 (mod 3),
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which is impossible. Thus there are no positive integers satisfying (74.0).

75. Evaluate the sum of the infinite series

8= >: mn(rn + n)

Solution: We have
Do I

- — ± I dx
?n.nl rnn(nz + is) Jo

=

=
Jo x

= j du (x = I —

=
u2 du

= j dot

=

On the other Iland, we have

= nLn(m+fl)
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d3qr(q+r)
GC/)(q,r)— 1

(It)

so that S = 2.

76. A cross-country racer runs a 10- mile t ace 50 minutes. Prove
that somewhere along the course the racer ran 2 miles in exactly 10 minutes.

Solution: For 0 < x < 8 let T(r) denote the Lime (in rruiumutes) taken by the
racer to run between points x and i + 2 miles along I he couise.

hue function ?'(.r) Continuous Ofl 10,8J and has the property

(76.1) T(0) + T(2) + T(4) + T(6) + T(8) 50.

11w equation (76.1) shows that not all of the values T(o),-r(2),'r(4),'r(6) and
'1(8) are greater than 10 nor are all of them less than 10. Hence, there exist
integers 7 antI s with 0 i, s � 8 such that

T(r)<10�T(.c).

Then, by the iuitermnediate value theorem, there exists a value y, r <

suc.h that '('(1/) 10, and this proves the assertion.

77. Let AR be a line segment with riuidpoint. 0. Let R be a point on
AR between .4 and 0. Three semicircles are (:oIistructe(1 on the same side of
AR as follows: is the semicircle with centre 0 and radiusloAl J0B;
is the semicircle with centre and radius meeting RB at C': 53 is the
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semicircle with centre .9 (the midpoint of Cli) and radius ICSI SDI. The
common tangent to 52 and 53 touches 52 at P and 52 at Q. Time perpendicular
to ilB through C meets at D. Prove that PCQD is a rectangle.

Solution: Wo give a using coordinate geometry. The (:oordinat(
svstenmi is chosmni so that

.1 ()-(0,(fl,

'1110,1 We ilaV(' ( —(1.0), wh"ie 0 < a 1, an(l IIOiI(('

C=(J—2n,0),

'I 1w equations of I he t hree sonucijrk's are given as follows:

•r2-,-y2= I

(x -I- IL)2 f y2 (I — (1)2

.93 (.z+a—- I)2--y2=n2

'Flie inlar to .411 through C meets at

D = (I —

The equation of the common tangent to S2 and 53 is

— 2a)-f — = I — 2a +2a2

an(l this line touches S2 at the poilit

P=(2n2—4a-I-1.2(l

and 53 at the point

Q = (1 —

the slope of PD is
2aV'o — —

2a—2a2 — V —(1
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and (tic slope of PC' is

2(1 — —

202_2(z -. V

i'he product of I hew' slopes is —1, showing that PG aud P1) are pci iendiciii;r.
that is = 90° Similarly,

/ PI)Q / I)Q( ' - /Q( .1' —

so that I'DQ( ' a r('Claligh".

78. Determine the inversP of the ii x n matrix

01 l...I101.1
(Th.0) l 0

ll1...0
where it � 2.

Solution:

1 0 0 . . 0 1 1 1 . . .0l0...0 l11...1
,(1

000.1 111.1
so that

S=(i—f,
For real tiumber c, we have

(U — I)(eU I) = eU2 -(c-f l)U+ I
= (cn.—(c+l))U+J.
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Thus, if we choose — (t -f 1) 0, that is c 1 /(n — I), we have

(U - 'r' = — I
•ti — 1

2-n I I

n—i n—i

— fl—I a I

H—i ,.—I -. • n—I

79. Evaluate the sum

(79.0) 5(n) - I )'

where is a positive integer.

Solution: Set w exp (in/n) so that

5(n)

lien cc, by the binomial we obtain

c(n)
= 2' k=() 1n0

-
(';)

1 1 In\ fn.\
= 2'

Ihat is 5(n) =
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80. T)etermine 2 x 2 matrices 1? and C with integral entries such that

[ ]

+

Solution: Let

!]
sc, that

2A
= 0 4

and thus
42 + 3fl + 21 = 0

A3+3A2-f2A- 0.

llenc,., we have

(A-i- f)3= A3+3A2+31i +1=11+ 1,

aud so
.4 = (A + 1)a —1

and we may rake

?]

81. Find two non-congluent similar triangles with sides of integral
length having the lengths of two sides of one triangle equal to the lengths of
two sides of the other.
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Solution: Let the two triangles be ABC and DEF. We suppose that

IABI — a, AC b,

I

(1 Ii

Al LU • 1U(l Al)!' F' III stiiiilar.

a b

b c 1

so that

($1.2) c - d =

From (81 .11 we hate

(81.3) 1 <h/a,

and from (81.2) and the n1C(1Uality c a + h we have

— < (i-f h,
ii

so that

($1.4) 1.618.

To satisfy (81.3) and (81.4) we choose h/a = 3/2. say a = 21 and h 31.

['lien, by (81.2). we have

91 271e= —
2 1

To ensure that c and d are integers we choose I = so that

b=12, c=18. d=27.
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The triangles with sides 8,12,18 and 12, iS, 27 respectively, meet the require-
merits of the problem.

82. Let a,b,c be three real numbers with a < & < e. Thu function
f(x) is continuous on and differentiable on (a,c). The derivative f'(x)
is strictly inrrea.sing on (a, c). Prove that

(c b)f(a) 4- (b ii)f(e) (r — a)f(h)

Solution: By the mean-value theorem there exists a real number such

that

a<v<b,

and a real number v such that

= f'(v), b< v <c.

As a <v < v <c and 1' is increasing on (a, c), we have

f'(u) < f'(v)

and so
1(b) — 1(a) -- f(b)

b--a c—b

Rearranging this inequality gives (82.0).

83. The sequeftce {a,, j
m = 1,2,...) is such that aflL > >

0 , m = 1,2 and am converges. Prove that

—
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converges and determine its sum.

SoJution: Let ( > 0. As a,, is a convorgeut series ot positive' lerius,
there exists a positive integer N() such that

0 < + + <(/3,

all ni ? I,ct n � 2A ()4- I. un is even, say a -- 2L, W1RIv 1V( ),
liniii I) 'V('

ka2k < ak+I 4 4- •.. + < (/3

Ct) that
= 2ku2k < 2/.3 <

If a is odd, say n 2k 1, where k � Au), from (83.1) we have

ka25÷i < 4- 4 + a2k+I < '/3

so that
no,, = -l °2k+1 < 2c/3 4 (/3 = (

We have SlJoWfl that

0<ua,,<,
and tittis

lint = (I

Next, set

— ak÷i), 71 1,2

We have

= > —
k=1

T. V-fl

= Lkus-
k=1



150 SOLUTiONS

= Ek—(k—
k= 1

= — 1

1

Letting n —, oc, we see that S,, exists, and the valii

= + 0— 0— ()

llepce, — convelges, and its suiii is

84. The continued fraction of v'l), whete 1) is an odd nojisqiiare
integer > 5, has a pet iod of length one. What is the length of the period of
the continued fraction of +

Solution: The continued fraction of is of the form

JD= [a;

where a and h are positive so that

b-I-

=

giving
- D + a2 -ab- I

2a—h

As D is not a square, is irrational, and we must have

b=2a, D=a2-FI.
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1urtherrnoxe, I) is odd and greater than 5, we have a = 2c. c � 2 and
I) 4c2 + 1. It is to that

l+vrnl
2 j

I

2

— 2:—1+v'I)
—(2e—1) — 2c —

so that thn continued fraction of I + is

[r;

as — I > 3, and its period is of length 3.

85. Let G be a group whjch has the following two properties:

(i) G has no element of order 2,
/ (ii) foiall:c,yE G.

Prove that C is ahelian.

Solution: For x. y C we have

((;ry')y)2y
= ))2y (by (85.O)(ii))

=
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that is

(85.1) =

we have

= :(x
xy1(z _1)22:, (by

that is

{S.S.2) _:

Similarly, we have

(85.3) y'x'y
Then we obtain

= I

= (by (85.2))

=
(by (85.3))

= (zy)2(yx)2
(yz)2(yx)2 (by (85.O)(ii))

and thus, as G has no elements of order 2, we have.

1,

that is = proving that G is abelian.

86. let it [ai,) be an x n real symmetric matrix whose entries
satisfy

(86.0) I , <2,
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for I = 1,2,. ..,n. Prove that 0 � detA � 1.

Solution: Let A d'note one of the cigenvaines of 1 and let x (/ 0) he an
dgeiivector of A correspoiitling to A, so that

(86.1) A,; -

Set x ( aitd C1IOOSC i I hat

ri / °

From (he I-tb row of (86. 1), obtain

= Ax1 ,
j 1

so that

(A — (Z1jX3

r- I

and thus

IA—111x11 =
j=1

<
3=1

1

lxii,

showing that

(86.2) A—1l<I.
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Since A is a real symmetric teatrix,.\ is real and from (86.2) we see that

(86.3)

IAt devote the n cigenvalues of '1. Each is nonnegative by (Sli.3).
'Ihus we have

0 < (k't 4 ,\1N...

tracefl)

87. Let I? be a tinitc ring conla.ining an clement r which is not a
divisor of zero. Prove that R must have a multiplicative identity.

Solution: As is a finite ring there exist integers in and n such that

($7.1) l<rn<n.
We wish to show that

(87.2) r

for some integer k ? 2. If liz 1 we may take k = a. If in � 2, from (87.1),
we have

— r"_') = 0
As r is not a divisor of scm, we must have

(sL3) — 0

if in - 2 we may take k = n — 1 1? 2). If rn > 3, front (87.3) we have

r(rm—2 — = 0.
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As r is not a divisor of zero, we must have

= o

11 nz 3 we may take k -- 2 (> 2). Continuing in Ibis We thai
($7.2) holds with k = — ni + I (> 2). Foi any 1?. we baw from ($7.2)

:rr --

fr ()

As 7 is not a divisor of zero, we see that

(874) =

Similarly, we have

(87.5) z = r1x.
From (87.4) and ($7.5) we see that is a multiplicative identity for

88. Set .1, (1,2 n}. For each non-empty subset S of .1, deline

a(S) max S — mm S.
sE.'i

Determine the average of w(S) over all non-empty suhscts S of

Solution: For 1 < k < I < n let S(k,I) denote the of subsets of with

min5=k, maxS=I.

We have, for all S E S(k,I),

and

S(k,I)I= {
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Then we have

to(s) w(S)

I

I

>_: 2

k=I 1—k+I k—I

((a — (k— l)2k÷1)

k2 -

(v—i)2"

L÷k
= (i_i)

2" (2_ + — 1

= (a

= (n—3)2"+(n-1-3).

so that the required average is

(a —3)2t+(n +3)
= 1,2,....

89. Prove that the nuuuuubir of odd binomial coefficients in each row
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of Pascal's tria.ngk is a power of 2.

Solution: Iho entries in the nth row of Pascal's triangle aie the coefficients
of the J)uWOES Of 3. iD the expansion Of (I + 1)'. We write n in

hi nat v jiot at on

I) + -1 +

hell' ('i aic intcgers such that

a1 > > •• > �
Now

(1 + — + 2x + + (mod 2),
(1 + x)' + 3.2)2

1 + x4 (mod 2),
(1 + 3.)8 (I + I + x8 (mod 2),

and so generally for any nonnegative integer a we have

(1 +.r)2G I (mod 2).

we have

(I + z)" = (1 +
(1

(1 + (1 + r2'k) (mod 2)

1 + + T22 + +

+ +

+...
(mod 2),

and the number of odd coefficients is

Ik\ Ik\
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90. From the n x a array

1 2 3 ...
a + I a + 2 n + 3 ... 2v

2ii 2u 3 7 2ii 3

— I )r' + 1 (n — )n 2 (i, — I)ii + 3

a. number is The row and coIn inn cooL ii fling a to tin deleted.
L'roir, tho array a imintn'r N tiul Ott ;iiul oltitit ii

deleted as before. 'flie selection is continued until only one mimbor x,, remains
availabLe for selection. Determine time sum x1 + I x,,.

Solution: Suppose that x,, I � i n belongs to time row and the
column of thc array. Then

— -— fly I I � i � n

and so

X, 7: T, — fl2 1 L
Now {ri ,...,r,j and s} are permutations of {],2 a) and so

Thus
712(fl-3- 1) — 2

91. Suppose that p X's and q 0's are placed ott the circumference of
a circle. The number of occurrences of two adjacent X's is a and the number
of occurrences of two adjacent 0's is h. Determine a — b in terms of p and q.
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Solution: Let

Ni,-,.

detiote I h r.uml)er of occurrenc"s of XX X0, ox, 00, i-espectivelv. Tlieii
clearly we have

= U,
-- 1,,

+ v
4- N,4 —

so that

a — b - N —

= -- — (Nc(. -f- -- .

7) (j + —

Finally, we show that which gives the resell

(1— b = p — q.

To see that Nc,, = we consider the values of a function S as we make one
clockwise tour of the circumference of the circle, starting and fumisbilLg at the
same poir.t. Initially, we let S -= 0. Then, we tour the circle, the value of
S is changed as follows as we pass from each X or 0 to the next X or 0:

new value of S = 01(1 value of S

where

f I , in going form 0 to X
0 . in going from X to X or 0 to 0

—J , in going from X to 0.

Clearly, the value of S at the end of the tour is Nc,,- —. N,c,. However, S must
be t) at the end as we have returned to the starting point. This (omnpletes the
proof of Nc,,. N,,,, and the solution.
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92. Ia the triangular array

11 112321
1 3 6 7 6 3 t

1 '1 10 16 19 16 10 1

(T!try (ex pt tb' top 1) is the SIIIII UI lie i'iil IV 'I ;ibuvi' it
afl(1 the entries b and c immediately to the left and tight of a. Absence of au
entry in(Iicatcs zero. I'rove that every row after the second row contains an
entry which is even.

Solution: The first eight rows of the triangular array taken modulo 2 are
given in (92.1).

11110101
1 1 0 1 0 1 1

(92.1)
0 0 0 1 0 0 0 1

•11 101110111
1 0 1 0 0 0 1 0 0 0 1 0 1

11OIIOJIIOJIO11
The lust four entries in the fourth row of (92.1) are 11 (11, which axe exactly
the same as the first four entries in the eighth row. Thus the pattern

1101
1 0 0 01110

1010
repeats itself down the left-hand edge of the array. As each row of (92.2)

contains at least one zero, every row from the fourth ott down contains an
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even number. This completes the proof, as the third row contains an even
number.

93. A scqlietice of 71 real iumnbetrs X1 studios

(93.0)
{ ± rI 2 <i <

is a J)OSjtiVC real ILLt10l)er. 1)01 (r(fljr'(' !0'.VoJ 1)011111! or (ho avorag(
ol x,, as a noel Oil only.

Solution: Let be any real numl)er such thai

Xn.EiI

Then, we have

"I.'

=
Iz,12

=
Jx,_i + c12

=
4-c2m'

=
4 2c x, -f c2n,

so that

0 < 2c + C2v

and thus (as c> 0)

—1
2
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94. that the

(94.0) f(x) = :r 1-5

is ilTY'(l Ribi)' (W(L Z or 1) >

Solutioi: So ppose f(z is over Z inooi nily.
noiua IS ti(.' 1 iid b( .r ) I h I .111 I) I ha

( 9'. , ';Ii i 1. , —
h I

'rius, hay'
.5 = 1(0) f!(0)h(0)

and, as g(O), /i(0) are integers and S is prime, uc Is.' withoni loss ot geuciality

g(0) — *1, h(0) ±5.

Let

çi(z) — Jf( -

IC the fat orizatioji nt over C. 'I hen. we have

1

aid so at least one of tie /3,1 is less than or equal to 1, say

l<!<r.
Hence

1(13th 1 I

� 5 -— ..
— —

> 5—1-1—-i—I
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which contradicts

f(f3z) = g(fi,)h(flj) = 0.

proves thai f(.r) is irreducible over Z.

95. l,et (s • U, hi ii ( > 1) distinct teal uunibUrs. fl1 it titine the
g(n('ra I solul lint cit ths(' of n — 2 linea r eqicatinie.

• •, (I,

1L2X2 • I 0,
—. 0,

I- I 0,

iii the it unknowns :ch. . .

Solution: Set

1(z) = (z — — a.2)... (x —

ftr k = 0, 1,.. . , it — I the partial fraction expansion of rk/f(a.) is

(95u

both sides of (95.1) by f(z), andequating oefficients of x"1, we

(95.2)

This shows that Il 1
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(Lj

are tWo soliitioiis Of 'l'hesc two suliitioiis a.ic Ii rica ifldep('1I(l(91 I lOt'

ise there would exist r'al on nherc and I (not 1701 Ii zero) sridi ha

a,, + &v (0.0)
that is

(95.3) .s+ 1 = n

111 0 their from (95.3) we have s 0. which a 'ontradiction. Thus, / 9
and (95.3)

1=1,2 n,

which contradicts the fact that the are distinct. 'I'hus tire solutions and
are. linearly independent.

Next, as the a are distun t, the \'andermonde (letorininant

I I ... ii
02

•..

does 3101 vanish, and so the rank of the coefficient matrix of (95.0) is V — 2.
Titus alL solutiorom of (95.0) are given as linear combinations of any two linearly
independent solutions. Hence all solutions of (95.0) are given hy

(xi x,,) =
— (o+iM1
—

f'(e.,,)

for real iwnibers and



>1 +
irn<N

GCL(n .n)-.1

+ >i

(i(

IN
GCL)(m,N)=I
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96. Evaluate the sum

5(N) = 2,3,...

vn+n>V

.n)_1

Solutinii: lor > 3

•S(N) — +
I<n<,?V-1

'nfn>N

=

na+r.>:V- I

= S(N—I) —

— S(iV—1)
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I 1 1

S(N - 1) g -I

(;c 'I

- S(i\ I),

<

rcsuernl)ernig that (C l)(N/2, :\) > I for even N (� 4). 'thus. we have

S(V I; 2) 5(2) — 1/2.

97. Evaluate the liniii.

(91.0) L

Solution: l'artitiov the iiiiit square 10, 1] x 10, into sllbs(juares by the
partil ion points

{ (j/n,k/n) 0< j,k �

Then a Itiemaun sum of the function z/(r2 y2) for this partition is

and also

i/v I —

(i/n)'2 (k/n)2 v2 -

1 1! 2:

(i/n)2 (k/ ;;Ti .1
dx dy,

so that (97.0) becomes

ftft r
I = I I -7----—2dxdy

Jo J0 3'
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S fW/.l
-: j / cosOdrdO -l I I cosOd7-dO

J&—o Jtc=i-/4Jr=o
çx/2

I dO 4 j (OtO,1O
Jo Jr/i

— [Iii o

- u/i -
tat is r/ 1 1 (in 2)/2.

98. I'rove that

(98.0) tan 4 sill It

Sohition: Fot ronvenieiice ws' let p and set

C = COS p. 3 SIll 7)

Then, w" have c -I = and so (r 4- is)fl —I, that is

-t I 1c'0si — -- .1 330c7.s4

— - — tics10 — —1

Equating imaginary parts, we obtain

llct0s — 330c4s 1 55(Y — 0

Front (98.1), s.c a 0, we have

(98.2) — 165c8s2 -I- -—
qlO 0.

Ncxt, as

(98.3) i —

tho equation (98.2) becomes

(98.4) 11 — 220s2 -ç
— 281636 1 281638 1024310

and thus
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(I is — 44s3 —
— 1 1e2(1 — 452)2

— 121s2 26401 — + i024s10
-.11(1 — s2)(i -F

— —1 1 F 22052 — 1232.c' F -- -F 024310

= 0

by (98.4). This proves that

I J.c 1 I. —

eli — = I

Next, we have

• 3tanp—tan3p
tan 3p -F 4 2p = i —

-F 8 sin p CuSp

—

— 3s2: +

that is, using (98.3),

(98.6) tan -F 4 2 = Its

Then, from (98.5) and (98.6), obtain

tan 3p F 4 sifl2p =

As tan 3p> 0, sin 2p> 0, we must have

3ir

as required.

99. For 1,2,...Iet

1'l 1

e,1=1 F F—+"-F—.23 n
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Evaluate the sum

Solution: k a positive integer. We have

I) . 3

Cs

= C5

—

— I -- Ink) lii k

k 4- 1 k + I

Letting n —t and using tlw fact that

urn --l:tk)

exists, and aI30
Inklim— =0,

k -f-i

we fInd that
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100. For r> I dctermiiw the sum of the influtite series

3:

f fl) fl)

Solution: For v a positive integer, set

V :c2

so that

S,(x) x
—

1- -F +

11 1 \ / 1

= - +

I I

-— x—l

Thus, as x> 1, we have

S,,(r) Iurn —-- =7'-°°3—I x—l

giving

x+1 + (x+



THE SOURCES

Problem

01: Gauss, see Werke, Vol 2, Göttingen (1876), pp.11-45, showed that

+ WT(P—1)/2 - (—1 +

.f ... (—1 —

04: This result is implicit in the work of Gauss, see l1'erke, Vol 2,
Göttiiigen (1876), P.292

05: 'l'he snore general equation p2 = x3 + ((4b — — 4a2), when' a has
no prime factors 3 (mod 4), is treated in L.J. Mordell, 1)iophantine
Equations, Academic Press (1969), pp.238-239.

09: This problem was suggested by Problem 97 of The Green Hook. It
also appears as Problem E2115 in American Mathematical Monthly
75 (1968), p.897 with a solution by G.V. McWilliams in American
Mathematical Monthly 76 (1969), p.828.

10: This problem is due to Professor Charles A. Nicol of the University
of South Carolina.

11: Another solution to this problem is given iii Crux Matheinaticorum
14 (1988), pp.19-20.

14: The snore genera] equation dV2 — 2eVW — dW2 = I is treated in
K. Hardy and KS. Williams, On the solvability of the diaphantine
equation dV2 — 2eVW — dW2 = 1, Pacific Journal of Mathematics
124 (1986), pp.145-158.

17: This generalizes the well-known result that the sequence 1,2, - - - , 10

contains a pair of consecutive quadratic residues modulo a prime
� 11. The required pair can be taken to be one of (1, 2),(4, 5) or
(9, 10).

19: Based on Theorem A of G.H. Hardy, Notes on some points in the
integral calculus, Messenger of Mathematics 18 (1919), pp.107-l 12.



20: This identity can be found (eqn. (4.9)) on p.47 of H.W. Could,
Combinatorial Identities, Morgantown. IV. Va. (1972).

21: The more general equation a1x1 + + = k is treated in lIua
Loo !<eng, introduction to Number Theory, Springer- Verlag (1982),
see Theorem 2.1, p.276.

22: Finite sums of this type are extensively in Chapter 15 of
W.L. F'ei-rar, fItghr .4lyebra, Oxford University 1'ress (1950).

25: See Problem 2 OIL p.113 of 1V. Sierpiuski, Eb'nuntart, Thror,, of
is, 'Warsaw (1964).

26: by Problem A-3 of the Forty Seventh Annual William
Lowell Putnam Mathematical Competition (December 1986).

29: The discrimiitant of f(xk), k � 2, is given in terms of the dis-
criminant of f(x) in ILL. Goodstein, The discri,ninant of a certain
polynomial, Mathematical Gazette 53 (1969), pp.60-61.

30: II. Steinhaus, Zadanie 498, 10 (1957), No. 2, p.58 (Pol-
ish).

34: This problem was given as Problem 3 in Part B of the Seventh An-
nual Carleton University Mathematics Competition (1979).

37: Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1975).

38: Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1972).

39: Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1973).

40: Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1973).
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41: This is a classical result, see for example H.S.M. Coxeter and S.L.
Greitzer, Geometry Revisited, Mathematical Association of America
(1967), pp.57, 60.

45: Suggested by T.S. Chu, Angles svith mtional tangents, American
Mathematical Monthly 57 (1950), pp.407-408.

47: Suggested by W. Gross, P. hilton, .1. P4(lersell, KY. Yap, An aiyo-
ritbnz for innltiphcahon zn modular (srithmetic, Mathematics Maga-

oc 59 (1 98t;), pp.167 170.

48: Based on Satz 3 on p.8 of Th. Skolem, Diophantischc Gleichungcrz,
Chelsea Publishing Co., New York (1950).

49: Based on Example 1 in D.G. Mead, Integration, American Mathe-
matical Monthly 68 (1961), Pp.152-1 56.

52: Suggested by 5.4.5 of L.C. Larson, Problem-Solving Through Prob-
lems, Springer-Verlag (1983).

53: See Problem 48 of Lewis Carroll's Pillow Problems.

56: See Problem 1 on p.13 of W. Sierpinski, Elementary Theory of Nutn-
bers, Warsaw (1964).

59: See Problem 12 on p.368 of W. Sierpinski, Elementary Theory of
Numbers, Warsaw (1964).

62: 'I'his problem was suggested by I'roblem A-4 of the Thirty Eighth
Annual William Lowell Putnam Mathematical Competition (Decem-
ber 1977).

63: This problem was shown to us by Professors David RicILmaJL and
Michael F'ilaseta of the University of South Carolina.

64: This result is due to IIJ.S. Smith, On the value of a certain arith-
nietical determinant, Proceedings of the London Mathematical So-
ciety 7 (1876), pp.208-212.
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68: This is a well-known problem, see for example 4.4.4 in L.C. Larson,
Problem-Soltring Through Problems, Springer-Verlag (1983).

69: This problem was suggested by Problem 3 of Part A of the Fifteenth
A nnual Carleton University Mathematics Competition (1987).

70: Forms ar2 +5y2+cz2 represent every integer have been charac-
terized by L.E. l)ickson, The forms o.r2+by2+r:2 which represent all
integers, Bulletin of the American Society, 35 (1929),
pp.55-59.

75: This problem was suggested by Problem 95 of The Green Book.

82: Suggested by K.A. Bush, On an application of the mean value theo-
rem, American Mathematical Monthly 62 (1955), pp.557-578.

86: Suggested by ideas of §7.5, Estimates of characteristic roots, in L.
Mirsky, An Introduction to Linear Alqebra, Oxford University Press
(1972).

89: This is a well-known problem. A generalization to the multinomial
theorem is given by H.D. Ituderman in Problem 1255, Mathematics
Magazine 61(1988), pp.52-54.

94: Suggested by an example given in a talk by Professor Michael Fl-
la.seta at Carleton University, October 1987.

95: See Problem 2 on p.219 of W.L. Ferrar, higher Algebra, Oxford
University Press (1950).

98: See Problem 29 on p.123 of F,.W. lEobson, A Treatise on Plane and
Advanced Trigonomctt-y, Dover Publications, Inc. New York (1957).
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