

THE RED BOOK OF MATHEMATICAL PROBLEMS

KENNETH S. WILIIAMS KENNETH HARDY

Carleton University, Ottawa

Dover Publications, Inc.
Mineola, New York

Copyraght

Copyright (1988 by Integer Press.
All tights teserved under Pan American and Intcrational Copynight Cinnventions.

Published in Canada by General Publishing Cimpany, 1.td. 30 I esmall Road, Ion Mills, Toronto. Ontinio.

Bibliographical Note

This lover edition, first published in 1996, is a slightly corrected republication of the woik originally published hy Integer Press, Ottawa, Canada, in 1988 under the title The Red Buok: t00 Practice Problems for Undergraduate Mathematics Competitions. A section of the original page 97 has been delcted and all subsequent copy repaged thereafter.

Libraty of Congress Cataloging-in-Publication Data

Williams, Kenneth S.
The red book of mathematical problems / Kenneth S. Williams, Kenneth Hardy.
p. cm.
"A slightly cornected republication of the work originally pulblished by Integer Press, Ottawa, Canada, in 1988 under the title: The red book: 100) practice problems for undergraduate mathematics competitions"-lip. verso.

Includes bibliographical references.
ISBN 0-486-69415-1 (pbk.)
I. Mathematics-Piobkms, exercises, ctc. I. Ilardy, Kenneth. II. 'litle.

Q143.W55 1996
$510^{\prime} .76-\mathrm{dc} 20$
96-43820
CIP

Manufactured in the United States of America
Dover Publications, Inc., 81 Fast 2nd Street, Mineola, N.Y. 11501

PREFACE TO THE FIRST EDITION

Il has berome the fashion for some authors to include literat y puotations in thrit mathematical texts, presumably with ihe aim of connecting mathematics "ud the humanities. The prefacc of The Green Book* of 100 practice problems lon undergraduate mathematics competitions himed at connections between finolem-solving and all the traditional elcments of a faity tale mystery, w:it, h. discovery, and finally resolution. Alihough The Red Book may srem io li,w political overtones, rest assured, dearieader, that the quotations (labelled M:ur. Pushkin and liotsky, just for fun) are metely an inspimion fot your

The: Red Book contains 100 problems for underg aduate students training f(n) mathematics comperitions, panicularly the William Lowell Putnann Mithematical Competition. Along with the problems come useful hints, and complete solutions. The book will also be useful to anyone interested in the prosing and solving of manhematical problems at the undergraduate level.

Many of the problems were suggested by ideas originating in a varicty of murces, including Crux Mathematicorum, Mathematics Magazine and the American Mathematical Monthly, as well as various mathematics compeulions. Where prossible, acknowledgement to known sources is given at the end of the book.

Once again, we would be interested in your reaction to The Rei Book, and invite comments, alternate solutions, and even corrections. We make no claim that the solutions are the "best possible" solutions, but we trust that you will find them elcgant enough, and that The Red Book will be a practical tool in training undergraduate compctitors.

We wish to thank our typescter and our literary adviser at Integet Press for their valuable assistance in this project.

Kenneth S. Williams and Kenneth Hardy
Ottawa, Canada
May. 1988

[^0]
CONTENTS

Page
Notation ix
The Problems 2
The Hints $9:$
The Solutions :7
The Sources 17!

NOTATION

[x] denotes the greatest integer $\leq x$, where x is a real number. $\ln x \quad$ denotes the natural logarithm of x.
$\exp x \quad$ denotes the exponential function e^{x}.
$\phi(n) \quad$ denotes Euler's totient function defined for any natural number n.
$G C D(a, b)$ denotes the greatest common divisor of the integers a ind b.
$\binom{n}{k} \quad \begin{aligned} & \text { denotes the binomial coefficient } n!/ k!(n-k)!\text {, where } n \text { and } \\ & k \text { are non-negative integers (the symbol laving value zero }\end{aligned}$ when $n<k$).
$\left(\frac{n}{p}\right) \quad \begin{aligned} & \text { denotes Legendre's symbol which has value }+1 \text { (resp. }-1 \text {) } \\ & \text { if the integer } n \text { is a quadratic residne (resp. nonresidue) }\end{aligned}$ modnlo the odd prime p.
$\operatorname{deg}(f(x))$ denotes the degree of the polynomial $f(x)$.
$\tau(n) \quad$ denotes the number of distinct prime divisors of the positive integer n.
$f^{\prime}(x) \quad$ denotes the derivative of the function $f(x)$ with respert to x.
$\operatorname{det} A \quad$ denotes the determinant of the square matrix A.
Z denotes the domain of rational integers.
Q, R, C denote the fields of rational, real, complex numbers respec. tively.

THE PROBLEMS

Munkind always scts itself only such problems as it can solse; . . . it will aluays be found that the lask itself arisess omly when the material conditions for its solution already exist or are at least in the process of formation.

Karl Marx (1818-1883)

1. Let p denote an odd prime and set $\omega=\exp (2 \pi i / p)$. Evaluate the product

$$
\begin{equation*}
E(p)=\left(\omega^{r_{1}}+\omega^{r_{2}}+\ldots+\omega^{r_{(p-1) / 2}}\right)\left(\omega^{n_{1}}+\omega^{n_{2}}+\ldots+\omega^{n_{(p-1)} / 2}\right), \tag{1.0}
\end{equation*}
$$

where $r_{1}, \ldots, r_{(p-1) / 2}$ denote the $(p-1) / 2$ quadratic residues modulo p and $n_{1}, \ldots, n_{(p-1) / 2}$ denote the ($\left.p-1\right) / 2$ quadratic nonresiducs modulo p.
2. Let k denote a positive integer. Determine the number $N(k)$ of triples (x, y, z) of integers satisfying

$$
\left\{\begin{array}{lll}
|x| \leq k, & |y| \leq k, & |z| \leq k \tag{2.0}\\
|x-y| \leq k, & |y-z| \leq k, & |z-x| \leq k
\end{array}\right.
$$

3. Let $p \equiv 1(\bmod 4)$ be prime. It is known that there exists a unique integer $w \equiv w(p)$ such that

$$
w^{2} \equiv-1 \quad(\bmod p), \quad 0<w<p / 2
$$

(For example, $w(5)=2, w(13)=5$.) Prove that there exist integers a, b, c, d with $a d-b c=1$ such that

$$
p X^{-2}+2 r X Y+\frac{\left(w^{2}+1\right)}{p} Y^{2}=\left(a \cdot X+b Y^{\prime}\right)^{2}+\left(c X+d Y^{Y}\right)^{2}
$$

(for example, when $p=5$ we have

$$
5 X^{2}+1 X Y+Y^{2}=X^{2}+(2 X+Y)^{2},
$$

and whol p. I: we have

$$
\left.13 X^{2}+10 X Y+2 Y^{2}=(3 X+Y)^{2}+(2 X+Y)^{2} .\right)
$$

4. Let $d_{r}(n), r=0,1,2,3$, denote the number of positive integral divisors of n which are of the form $4 k+r$. Let m denote a positive integer. Prove that

$$
\begin{equation*}
\sum_{n=1}^{m}\left(d_{1}(n)-d_{3}(n)\right)=\sum_{j=0}^{\infty}(1)^{j}\left[\frac{m}{2 j+1}\right] \tag{4.0}
\end{equation*}
$$

5. Prove that the equation

$$
\begin{equation*}
y^{2}=x^{3}+23 \tag{5.0}
\end{equation*}
$$

has no solutions in integers x and y.
6. Let $f(x, y)-u x^{2}+2 b x y+c y^{2}$ be a positive-definite quadratic form. Prove that

$$
\left(f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)\right)^{1 / 2} f\left(x_{1}-x_{2}, y_{1}-y_{2}\right)
$$

$$
\begin{equation*}
\geq\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \tag{6.0}
\end{equation*}
$$

for all real numbers $x_{1}, x_{2}, y_{1}, y_{2}$.
7. Let R, S, T be three real numbers, not all the same. Give a condition which is satisfied by one and only one of the three triples

$$
\left\{\begin{array}{l}
\left(R, S, T^{\prime}\right) \tag{7.0}\\
\left(T,-S+2^{\prime} I^{\prime}, R \quad S+T\right) \\
(R-S+T, 2 R-S, R)
\end{array}\right.
$$

8. Let $a x^{2}+b x y+c y^{2}$ and $A x^{2}+B x y+C y^{2}$ be two positive-definite quadratic forms, which are not proportional. Prove that the form

$$
\begin{equation*}
(a B-b A) x^{2}+2(a C-c A) x y+(b C-c B) y^{2} \tag{8.0}
\end{equation*}
$$

is indefinite.
9. Evaluate the limit

$$
\begin{equation*}
I=\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k} . \tag{9.0}
\end{equation*}
$$

10. Prove that there does not exist a constant $c \geq 1$ such that

$$
\begin{equation*}
n^{c} \phi(n) \geq m^{c} \phi(m), \tag{10.0}
\end{equation*}
$$

for all positive integers n and m satisfying $n \geq m$.
11. Let D be a squarefree integer greater than 1 for which there exist positive integers $A_{1}, A_{2}, B_{1}, B_{2}$ such that

$$
\left\{\begin{align*}
D= & A_{1}^{2}+B_{1}^{2}=A_{2}^{2}+B_{2}^{2} \tag{11.0}\\
& \left(\Lambda_{1}, B_{1}\right) \neq\left(\Lambda_{2}, B_{2}\right)
\end{align*}\right.
$$

Prove that neither

$$
2 D\left(D+A_{1} A_{2}+B_{1} B_{2}\right)
$$

nor

$$
2 D\left(D+A_{1} A_{2}-B_{1} B_{2}\right)
$$

is the square of an integer.
12. Let \mathbf{Q} and \mathbf{R} denote the fields of rational and real numbers respectively. Let K and \mathbf{L} be the smallest subfields of \mathbf{R}. which contain both Q and the real numbers

$$
\sqrt{1985+31 \sqrt{1985}} \text { and } \sqrt{3970+64 \sqrt{1985}}
$$

respectively. Prove that $K=\mathbf{L}$.
13. Let k and l be positive integers such that

$$
G C D(k, 5)=G C D(l, 5)=G C D(k, l)=1
$$

and

$$
-k^{2}+3 k l-l^{2}=F^{2}, \quad \text { where } G C \prime D\left(F^{\prime}, 5\right)=1 .
$$

Prove that the pair of equations

$$
\left\{\begin{array}{l}
k=x^{2}+y^{2} \tag{13.0}\\
l=x^{2}+2 x y+2 y^{2}
\end{array}\right.
$$

has exactly two solutions in integers x and y.
14. Let r and s be non-zero integers. Prove that the equation

$$
\begin{equation*}
\left(r^{2}-s^{2}\right) x^{2}-4 r s x y-\left(r^{2}-s^{2}\right) y^{2}=1 \tag{14.0}
\end{equation*}
$$

has no solutions in integers x and y.
15. Evaluate the integral

$$
\begin{equation*}
I=\int_{0}^{1} \ln x \ln (1-x) d x . \tag{15.0}
\end{equation*}
$$

16. Solve the ienurrence relation
(16.0)

$$
\sum_{k=1}^{n}\binom{n}{k} a(k) \cdots \frac{n}{n+1}, \quad n-1,2, . .
$$

17. Let n and k be positive integers. Let p be a prime such that

$$
p>\left(n^{2}+n+k\right)^{2}+k .
$$

Prove that the sequance

$$
\begin{equation*}
n^{2}, n^{2}+1, n^{2}+2, \ldots, n^{2}+l \tag{17.0}
\end{equation*}
$$

where $l=\left(n^{2}+n+k\right)^{2}-n^{2}+k$, contains a pair of integers $(m, m+k)$ such that

$$
\left(\frac{m}{p}\right)=\left(\frac{m+k}{p}\right)=1
$$

18. Let

$$
a_{n}=\frac{1}{4 n+1}+\frac{1}{4 n+3}-\frac{1}{2 n+2}, \quad n=0,1, \ldots .
$$

Does the infinite serics $\sum_{n=0}^{\infty} a_{n}$ converge, and if so, what is its sum?
19. Let a_{1}, \ldots, a_{m} be $m(\geq 2)$ real numbers. Sct

$$
A_{n}=a_{1}+a_{2}+\ldots+a_{n}, \quad n=1,2, \ldots, m .
$$

Prove that

$$
\begin{equation*}
\sum_{n=2}^{m}\left(\frac{A_{n}}{n}\right)^{2} \leq 12 \sum_{n=1}^{m} a_{n}^{2} \tag{19.0}
\end{equation*}
$$

20. Fvaluate the sum

$$
S=\sum_{k=01}^{n}, ~\binom{n}{k}
$$

for all positive integers n.
21. Let a and \boldsymbol{b} be coprime positive integers. For k a positive integer, let $\boldsymbol{N}(k)$ denote the number of integral solutions to the equation

$$
\begin{equation*}
a x+b y=k, \quad x \geq 0, \quad y \geq 0 \tag{21.0}
\end{equation*}
$$

Evaluate the limit

$$
L=\lim _{k \rightarrow+\infty} \frac{N(k)}{k}
$$

22. Let a, d and r be positive integers. For $k=0,1, \ldots$ set

$$
\begin{equation*}
u_{k}=u_{k}(a, d, r)=\frac{1}{(a+k d)(a+(k+1) d) \ldots(a+(k+r) d)} \tag{22.0}
\end{equation*}
$$

Evaluate the sum

$$
S=\sum_{k=0}^{n} u_{k},
$$

where \boldsymbol{n} is a positive integer.
23. Let x_{1}, \ldots, x_{n} be $n(>1)$ real numbers. Set

$$
x_{i j}=x_{i}-x_{j} \quad(1 \leq i<j \leq n)
$$

Let F be a real-valued function of the $n(n-1) / 2$ variables $x_{i j}$ such that the inequality

$$
\begin{equation*}
F\left(x_{11}, x_{12}, \ldots, x_{1,1}\right) \leq \sum_{k=1}^{n} x_{k}^{2} \tag{23.0}
\end{equation*}
$$

holds for all x_{1}, \ldots, x_{n}.
Prove that equality cansot hold in (23.0) if $\sum_{k=1}^{n} x_{h} \neq 0$.
24. Let u_{1}, \ldots, a_{m} be $m(\geq$ 1) real numbers which ate such that. $\sum_{n=1}^{m} a_{n} \neq 0$. Prove the inequality

$$
\begin{equation*}
\left(\sum_{n=1}^{m} n a_{n}^{2}\right) /\left(\sum_{n=1}^{m} a_{n}\right)^{2}>\frac{1}{2 \sqrt{m}} . \tag{24.0}
\end{equation*}
$$

25. Prove that there exist infinitely many positive integers which are not expressible in the form $n^{2}+p$, where n is a positive integer and p is a prime.
26. Evaluate the infinite series

$$
S=\sum_{n=1}^{\infty} \arctan \left(\frac{2}{n^{2}}\right)
$$

27. Let p_{1}, \ldots, p_{n} denote $n(\geq 1)$ distinct integers and let $f_{n}(x)$ be the polynomial of degree n given by

$$
f_{n}(x)=\left(x-p_{1}\right)\left(x-p_{2}\right) \ldots\left(x-p_{n}\right) .
$$

Prove that the polynomial

$$
g_{n}(x)=\left(f_{n}(x)\right)^{2}+1
$$

cannot be expressed as the product of two non-constant polynomials with integral coefficients.
28. Two people, Λ and B, play a game in which the probability that A wins is p, the probability that B wins is q, and the probability of a draw is r. At the beginning, Λ has m dollars and B has n dollars. At the end of each game the wimmer takes a dollar from the loser. If A and B agree to play until one of them loses all his/her money, what is the probabilty of A winning all the inoney?
29. Let $f(x)$ be a monic polynomial of degree $n \geq 1$ with complex coefficients. Let x_{1}, \ldots, x_{n} denote the n complex roots of $f(x)$. The discriminant $D(f)$ of the polynomial $f(x)$ is the complex number

$$
\begin{equation*}
D(f)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2} \tag{29.0}
\end{equation*}
$$

Express the discriminant of $f\left(x^{2}\right)$ in terms of $D(f)$.
30. Prove that for each positive integer n there exists a circle in the $x y$-plane which contains exactly n lattice points.
31. Let n be a given non-negative integer. Determine the number $S(n)$ of solutions of the equation

$$
\begin{equation*}
x+2 y+2 z=n \tag{31.0}
\end{equation*}
$$

in non-negative integers x, y, z.
32. Let n be a fixed integer ≥ 2. Determine all furctions $f(x)$, which are bounded for $0<x<a$, and which satisfy the functional equation

$$
\begin{equation*}
f(x)=\frac{1}{n^{2}}\left(f\left(\frac{x}{n}\right)+f\left(\frac{x+a}{n}\right)+\ldots+f\left(\frac{x+(n-1) a}{n}\right)\right) . \tag{32.0}
\end{equation*}
$$

33. Let 1 denote the closed interval $[a, b], a<b$. Two functions $f(x), g(x)$ are said to be completely different on 1 if $f(x) \neq g(x)$ for all x in I . Let $q(x)$ and $r(x)$ be functions defined on I such that the differential equation

$$
\frac{d y}{d x}=y^{2}+q(x) y+r(x)
$$

has three solutions $y_{1}(x), y_{2}(x), y_{3}(x)$ which are pairwise completely different on I. If $z(x)$ is a fourth solution such that the pairs of functions $z(x), y_{1}(x)$ are completely different for $i-1,2,3$, prove that there exists a constant $K(\neq 0,1)$ such that

$$
\begin{equation*}
z=\frac{y_{1}\left(K y_{2}-y_{3}\right)+(1-K) y_{2} y_{3}}{(K-1) y_{1}+\left(y_{2}-K y_{3}\right)} . \tag{33.0}
\end{equation*}
$$

34. Let $a_{n}, n=2,3, \ldots$, denote the number of ways the product $b_{1} b_{2} \ldots b_{n}$ can be bracketed so that only two of the b_{i} are multiplied toget her at any one time. For example, $a_{2}=1$ since $b_{1} b_{2}$ can only be bracketed as ($b_{1} b_{2}$), whereas $a_{3}=2$ as $b_{1} b_{2} b_{3}$ can be bracketed in two ways, namely, $\left(b_{1}\left(b_{2} b_{3}\right)\right)$ and $\left(\left(b_{1} b_{2}\right) b_{3}\right)$. Obtain a formula for a_{n}.
35. Evaluate the limit

$$
\begin{equation*}
L=\lim _{y \rightarrow 0} \frac{1}{y} \int_{0}^{\pi} \tan (y \sin x) d x . \tag{35.0}
\end{equation*}
$$

36. Let ϵ be a real number with $0<\epsilon<1$. Prove that there are infinitely many integers n for which

$$
\begin{equation*}
\cos n \geq 1-\epsilon . \tag{36.0}
\end{equation*}
$$

37. Determine all the functions f, which are everywhere differentiable and satisfy

$$
\begin{equation*}
f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \tag{37.0}
\end{equation*}
$$

for all real x ind y with $x!y 1$.
38. A point X is chosen inside or on a circle. 'Two perpendicular chords $A C$ and $B D$ of the circle are drawn through X. (In the case when X is on the circle, the degenerate case, when one chord is a diameter and the other is reduced to a point, is allowed.) Find the greatest and least values which the sum $S=|A C|+|B D|$ can take for all possible choices of the point X.
39. For $n=1,2, \ldots$ define the set A_{n} by

$$
A_{n}= \begin{cases}\{0,2,4,6,8, \ldots\}, & \text { if } n \equiv 0(\bmod 2), \\ \{0,3,6, \ldots, 3(n-1) / 2\}, & \text { if } n \equiv 1(\bmod 2) .\end{cases}
$$

Is it true that

$$
\bigcup_{n=1}^{\infty}\left(\bigcap_{k=1}^{\infty} A_{n+k}\right)=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=1}^{\infty} A_{n+k}\right) ?
$$

40. A sequence of repeated independent trials is performed. Each trial has probability p of being successful and probability $q=1-p$ of failing. The trials are continued until an uninterrupted sequence of n successes is obtained. The variable X denotes the number of trials required to aclieve this goal. If $p_{k}=\operatorname{Prob}(X=k)$, determine the probability generating function $r(x)$ defined by

$$
\begin{equation*}
P(x)=\sum_{k=0}^{\infty} p_{k} x^{k} \tag{40.0}
\end{equation*}
$$

41. A, B, C, D are four points lying on a circle such that $A B C D$ is a convex quadrilateral. Determine a formula for the radius of the circle in terrns of $a=|A B|, b=|B C|, \mathrm{c}=\{C D \mid$ and $d=|D A|$.
42. Let $A B C$) be a convex quadrilateral. Tet I be the point ontside $A B C D$ such that $|A P|=|P B|$ and $/ A P I B-90^{\circ}$. The points Q, R, S are similarly defined. P'ove that the lines P ' R and $Q S$ ane of ergual lengel and perpendicular.
43. Determine polynomials $p(x, y, z, w)$ and $q(x, y, z, w)$ with real coeflicients such that

$$
\begin{align*}
(x y+z+w)^{2} & -\left(x^{2}-2 z\right)\left(y^{2}-2 w\right) \tag{43.0}\\
& \equiv(p(x, y, z, w))^{2}-\left(x^{2}-2 z\right)(q(x, y, z, w))^{2} .
\end{align*}
$$

44. Let \mathbf{C} denote the field of complox numbers. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be a function satisfying

$$
\left\{\begin{array}{l}
f(0)=0, \tag{44.0}\\
|f(z)-f(w)|=|z-w|,
\end{array}\right.
$$

for all z in \mathbf{C} and $\boldsymbol{w}=0,1, i$. Prove that

$$
f(z)=f(1) z \text { or } f(1) \bar{z},
$$

where $|f(1)|=1$.
45. If x and y are rational numbers such that

$$
\tan \pi x=y
$$

prove that $x=k / 4$ for some integer k not congruent to $2(\bmod 1)$.
46. Let P be a point inside the triangle $A B C$. Let $A P$ moet $B C$ at I, $B P$ meet $C A$ at E, and $(\prime P$ meen $A B$ at F. prove that

$$
\begin{equation*}
\frac{\left|P A_{1}\right| P B}{|P D|||P B|}+\frac{|P B||P C|}{|P E||P F|}+\frac{|P C||P A|}{|P F||P D|} \geq 12 . \tag{46.0}
\end{equation*}
$$

47. Let l and n be positive integers such that

$$
1 \leq l<n, \quad G C D(l, n)=1 .
$$

Define the integer k uniquely by

$$
1 \leq k<n, \quad k l \equiv-1(\bmod n) .
$$

Let M be the $k \times l$ matrix whose (i, j)-thentry is

$$
(i-1) l+j
$$

Let N be the $k \times l$ matrix formed by taking the colunins of M in reverse order and writing the entries as the rows of N. What is the relationship between the (i, j)-th entry of M and the (i, j) th entry of $: N$ modulo n ?
48. Let m and n be integers such that $1 \leq m<n$. Let $a_{i j}$, $i=$ $1,2, \ldots, m ; j=1,2, \ldots, n$, be $m n$ integers which are not all zero, and set

$$
a=\max _{\substack{1<i \leq m \\ 1 \geqq j \leq n}}\left|a_{i j}\right|
$$

Prove that the system of equations

$$
\begin{cases}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =0 \tag{18.0}\\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =0 \\ \vdots & \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =0\end{cases}
$$

has a solution in integers $x_{1}, x_{2}, \ldots, x_{n}$, not all zero, satisfying

$$
\left|x_{j}\right| \leq\left[(2 n a)^{\frac{n}{n-m_{j}}}\right], \quad 1 \leq j \leq n .
$$

19. Liouville proved that if

$$
\iint(x) \cdot{ }^{\prime \prime}(x) d x
$$

is an elernentary function, where $f(x)$ and $g(x)$ are rational functions with degree of $g(x)>0$, then

$$
\int f(x) c^{g(x)} d x=h(x) e^{g(x)},
$$

where $h(x)$ is a rational function. Dise Liouville's result to prove that

$$
\int e^{-x^{2}} d x
$$

is not an elementary function.
50. The sequence x_{0}, x_{1}, \ldots is defined by the conditions

$$
\begin{equation*}
x_{0}=0, \quad x_{1}=1, \quad x_{n+1}=\frac{x_{n}+n x_{n-1}}{n+1}, \quad n \geq 1 . \tag{50.0}
\end{equation*}
$$

Deternine

$$
L=\lim _{n \rightarrow \infty} x_{n} .
$$

51. Prove that the only integers $N \geq 3$ with the following property:
(51.0) if $1<k \leq N$ and $G C D(k, N)=1$ then k is prime,
are

$$
N=3,4,6,8,12,18,24,30
$$

52. Find the sum of the infinite series

$$
S=1 \quad \frac{1}{1}+\frac{1}{6} \quad \frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\cdots
$$

53. Semicircles are drawn externally to the sides of a given triangle. The lengths of the common tangents to these semicircles are l, m, and n. Relate the quantity

$$
\frac{l m}{n}+\frac{m n}{l}+\frac{n l}{m}
$$

to the lengths of the sides of the triangle.
54. Determine all the functions $H: \mathbf{R}^{4} \rightarrow \mathbf{R}$ having the properties
(i) $H(1,0,0,1)=1$,
(ii) $H(\lambda a, b, \lambda c, d)=\lambda H(a, b, c, d)$,
(iii) $H(a, b, c, d)=-H(b, a, d, c)$,
(iv) $H(a+\mathrm{e}, b, c+f, d)=H(a, b, c, d)+H(\mathrm{e}, b, f, d)$,
where $a, b, c, d, e, f, \lambda$ are real numbers.
55. Let z_{1}, \ldots, z_{n} be the complex roots of the equation

$$
z^{n}+a_{1} z^{n-1}+\ldots+a_{n}=0
$$

where a_{1}, \ldots, a_{n} are $n(\geq 1)$ complex numbers. Set

$$
\Lambda=\max _{1 \leq k \leq n}\left|a_{k}\right|
$$

Prove that

$$
\left|z_{j}\right| \leq 1+A, \quad j=1,2, \ldots, n
$$

56. If m and n are positive integers with m odd, determine

$$
d=\left(g(\cdot 1)\left(2^{m}-1,2^{n}+1\right)\right.
$$

57. If $f(x)$ is a polynomial of degree $2 m+1$ with integral coefficients for which there are $2 m r 1$ integers $k_{1}, \ldots, k_{2 m+1}$ such that

$$
\begin{equation*}
f\left(k_{1}\right)=\ldots=f\left(k_{2 m+1}\right)=1 \tag{57.0}
\end{equation*}
$$

prove that $f(x)$ is not the product of two non-constant polynomials with integral coefficients.
58. Prove that there do not exist integers a, b, c, d (not all zero) such that

$$
\begin{equation*}
a^{2}+5 b^{2}-2 c^{2}-2 c d-3 d^{2}=0 \tag{58.0}
\end{equation*}
$$

59. Prove that there exist infinitely many positive integers which are not representable as sums of fewer than ten squares of odd natural numbers.
60. Evaluate the integral

$$
\begin{equation*}
I(k)=\int_{0}^{\infty} \frac{\sin k: x \cos ^{k} x}{x} d x \tag{60.0}
\end{equation*}
$$

where k is a positive integer.
61. Prove that

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

is an integer for $n=1,2,3, \ldots$.
62. Find the sum of the inlinite series

$$
S-\sum_{n=0}^{\infty} \frac{2^{n}}{a^{2 n}}+1
$$

where: $a>1$.
63. Let k be an integer. Prove that the formal power series

$$
\sqrt{1+k x}=1+a_{1} x+a_{2} x^{2}+\ldots
$$

has integrad coefficients if and only if $k \equiv 0(\bmod 4)$.
64. Let m be a positive integer. Evaluate the determinant of the $m \times m$ matrix M_{m} whose (i, j)-th entry is $G C D(i, j)$.
65. let l and m be positive integers with l odd and for which there are integers x and y with

$$
\left\{\begin{array}{l}
l=x^{2}+y^{2} \\
m=x^{2}+8 x y+17 y^{2}
\end{array}\right.
$$

Prove that there do not exist integers u and v with

$$
\left\{\begin{array}{l}
l=u^{2}+v^{2} \tag{65.0}\\
m=5 u^{2}+16 u v+13 v^{2}
\end{array}\right.
$$

66. Let

$$
a_{n}=1-\frac{1}{2}+\frac{1}{3}-\ldots+\frac{(-1)^{n-1}}{n}-\ln 2
$$

Prove that $\sum_{n=1}^{\infty} a_{n}$ converges and determine its sum.
67. Iet $A=\left\{a_{i} \mid 0<i \leq 6\right\}$ be a sexuence of seven integens satisfying

$$
0-a_{10} \leq a_{1} \leq \ldots \leq n_{4} \leq 6 .
$$

For $i=0,1, \ldots, 6$ let

$$
N_{i}=\text { number of } a_{j}(0 \leq j \leq 6) \text { such that } a_{j}=i
$$

Determine all sequences A such that

$$
\begin{equation*}
N_{i}=u_{6-i}, \quad i=0,1, \ldots, 6 \tag{67.0}
\end{equation*}
$$

68. Let G be a finite group with identity e. If G contains elements g and h such that

$$
\begin{equation*}
g^{5}=e, \quad g h g^{-1}=h^{2} \tag{68.0}
\end{equation*}
$$

determine the order of h.
69. Let a and b be positive integers such that

$$
G C D(a, b)=1, \quad a \not \equiv b(\bmod 2)
$$

If the set S has the following two properties:
(i) $a, b \in S$,
(ii) $x, y, z \in \mathrm{~S}$ implies $x+y+z \in \mathrm{~S}$,
prove that every integer $>2 a b$ belongs to S.
70. Prove that every integer can be expressed in the form $x^{2}+y^{2}-5 z^{2}$, where x, y, z are integers.
71. bvaluate the sum of the infinite serien

$$
\frac{\ln 2}{2}-\frac{\ln 3}{3}+\frac{\ln 4}{1} \quad \frac{\ln 5}{5}+\ldots
$$

72. Determine constants a, b and c such that

$$
\sqrt{n}=\sum_{k=0}^{n-1} \sqrt[3]{\sqrt{a k^{3}+b k^{2}+c k+1}-\sqrt{a k^{3}+b k^{2}+c k}}
$$

for $n=1,2, \ldots$.
73. Jet n be a positive integer and a, b integers such that

$$
G C D(a, b ; n)=1
$$

Prove that there exist integers a_{1}, b_{1} with

$$
a_{1} \equiv a(\bmod n), \quad b_{1} \equiv b(\bmod n), \quad G C D\left(a_{1}, b_{1}\right)=1
$$

74. For $n=1,2, \ldots$ let $s(n)$ denote the sum of the digits of 2^{n}. Thus, for example, as $2^{8}=256$ we have $s(8)=2+5+6=13$. Determine all positive integers n such that

$$
\begin{equation*}
s(n)=s(n+1) \tag{74.0}
\end{equation*}
$$

75. Fivaluate the sum of the infinite series

$$
S=\sum_{\substack{n, v=1 \\ \operatorname{cin} \cdot \boldsymbol{r i m}, n=1}}^{\infty} \frac{1}{\operatorname{mn}(m+n)} .
$$

76. A cross-country racer runs a 10 -mile race in 50 mimutes. Prove that somewherc along the course the racer ran 2 niles in exactly 10 minutes.
77. Let $A B$ be a line segment with midpoint O. Let R be a point on $A B$ hetwoell A and O. Three semicircles are constructed on the same side of $A B$ as follows: S_{1} is the semicircle with centre O and radius $|O A|=|O B| ; S_{2}$ is the semicircle with centre R and radius $|A R|$, meeting $R B$ at $C ; S_{3}$ is the semicircle with centre S (the midpoint of $C B$) and radius $|C S|=|S B|$. The common tangent to S_{2} and S_{3} touches S_{2} at P and S_{3} at Q. The perpendicular to $A B$ through C meets S_{1} at D. Prove that $P C Q D$ is a rectangle.
78. Determine the inverse of the $n \times n$ matrix

$$
S=\left[\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \tag{78.0}\\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right]
$$

where $n \geq 2$.
79. Evaluate the sum

$$
\begin{equation*}
S(n)=\sum_{k=0}^{n-1}(-1)^{k} \cos ^{n}(k \pi / n) \tag{79.0}
\end{equation*}
$$

where n is a positive integer.
80. Determine 2×2 matrices B and C with integral entries such that

$$
\left[\begin{array}{rr}
-1 & 1 \tag{80.0}\\
0 & -2
\end{array}\right]=B^{3}+C^{3} .
$$

81. Find two non-congruent similar triangles with sides of integral length hitving the lengths of two sides of one triangle equal to the lengths of two sides of the other.
82. Let a, b, c be three real numbers with $a<b<c$. The function $f(x)$ is continuous on $[a, c]$ and differentiahle on (a, c). The derivative $f^{\prime}(x)$ is strictly increasing on (a, c). Prove that

$$
(c-b) f(a)+(b-a) f(c)>(c-a) f(b) .
$$

83. The sequence $\left\{a_{m} \mid m=1,2, \ldots\right\}$ is such that $a_{m}>a_{m+1}>$ $0, m=1,2, \ldots$, and $\sum_{m=1}^{\infty} a_{m}$ converges. Prove that

$$
\sum_{n=1}^{\infty} m\left(a_{m}-a_{m+1}\right)
$$

converges and determine its sum.
84. The continued fraction of \sqrt{D}, where D is an odd nonsquare integer >5, has a period of length one. What is the length of the period of the continued fraction of $\frac{1}{2}(1+\sqrt{D})$?
85. Let G be a group which has the following two properties:
(i) G has no element of order 2 ,
(ii) $(x y)^{2}=(y x)^{2}$, for all $x, y \in G$.

Prove that G is abeglian.
86. Let $A=\left[a_{i j}\right]$ be an $n \times n$ real symmetric matrix whose entries satisfy

$$
\begin{equation*}
a_{i i}=1, \quad \sum_{j=1}^{n}\left|a_{i}\right| \leq 2 \tag{86.0}
\end{equation*}
$$

for all $i=1,2, \ldots, n$. Prove that $0 \leq \operatorname{det} A \leq 1$.
87. Let R be a finite ring containing an element r which is not a divisor of zero. Prove that R must have a multiplicative identity.
88. Set $J_{n}=\{1,2, \ldots, n\}$. For each non-empty subset S of J_{n} define

$$
w(S)=\max _{s \in S} S-\min _{s \in S} S
$$

Determine the average of $w(S)$ over all non-empty subsets S of J_{n}.
89. Prove that the number of odd binomial coefficients in each row of Pascal's triangle is a power of 2.
90. From the $n \times n$ array

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
n+1 & n+2 & n+3 & \ldots & 2 n \\
2 n+1 & 2 n+2 & 2 n+3 & \ldots & 3 n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(n-1) n+1 & (n-1) n+2 & (n-1) n+3 & \ldots & n^{2}
\end{array}\right]
$$

a number x_{1} is selected. The row and column containing x_{1} are then deleted. From the resulting array a number x_{2} is selected, and its row and column deleted as before. The selection is continued until only one number x_{n} remains available for selection. Determine the sum $x_{1}+x_{2}+\cdots+x_{n}$.
91. Suppose that $p X$'s and q O's are placed on the circumference of a cincle. 'The number of occurences of two adjacent X 's is a and the number of occurrences of two adjacent O's is b. Determine $a-b$ in terms of p and q.
92. In the triangular array

$$
\begin{array}{ccccccccc}
& & & & 1 & & & & \tag{92.0}\\
& & & 1 & 1 & 1 & & & \\
& & 1 & 2 & 3 & 2 & 1 & & \\
& 1 & 3 & 6 & 7 & 6 & 3 & 1 & \\
1 & 4 & 10 & 16 & 19 & 16 & 10 & 4 & 1
\end{array}
$$

every cutry (except the top 1) is the sum of the entry a inmediately above it, and the entries b and c immediately to the left and right of a. Absence of an entry indicates zero. Prove that every row after the second row contains an entry which is even.
93. A sequence of n real numbers x_{1}, \ldots, x_{n} satisfies

$$
\left\{\begin{array}{l}
x_{1}=0 \tag{93.0}\\
\left|x_{i}\right|=\left|x_{i-1}+c\right| \quad(2 \leq i \leq n)
\end{array}\right.
$$

where \boldsymbol{c} is a positive real number. Determine a lower bound for the average of x_{1}, \ldots, x_{n} as a function of c only.
94. Prove that the polynomial

$$
\begin{equation*}
f(x)=x^{n}+x^{3}+x^{2}+x+5 \tag{94.0}
\end{equation*}
$$

is irreducible over Z for $n \geq 4$.
95. Let a_{1}, \ldots, a_{n} be $n(\geq 4)$ distinct real numbers. Determine the general solution of the system of $n-2$ linnar equations

$$
\left\{\begin{array}{cl}
x_{1}+x_{2}+\cdots+x_{n} & =0 \tag{05.0}\\
a_{1} s_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} & =0 \\
a_{1}^{2} x_{1}+a_{2}^{2} x_{2}+\cdots+a_{n}^{2} x_{n} & =0 \\
\vdots & \\
a_{1}^{n-3} x_{1}+n_{2}^{n-3} x_{2}+\cdots+a_{n}^{n-3} x_{n} & =0
\end{array}\right.
$$

in the n unknowns x_{1}, \ldots, x_{n}.
96. Evaluate the sum

$$
S(N)=\sum_{\substack{1 \leq m<n \leq N \\ m+n>N \\ \operatorname{GCD}(m, n)=1}} \frac{1}{m n}, \quad N=2,3, \ldots
$$

97. Evaluate the limit
(97.0)

$$
L=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{j}{j^{2}+k^{2}} .
$$

98. Prove that

$$
\begin{equation*}
\tan \frac{3 \pi}{11}+4 \sin \frac{2 \pi}{11}=\sqrt{11} \tag{98.0}
\end{equation*}
$$

99. Vor $n=1,2, \ldots$ let

$$
c_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

Fivaluate the sum

$$
S=\sum_{n=1}^{\infty} \frac{c_{n}}{n(n+1)} .
$$

100. For $\boldsymbol{x}>1$ determine the sum of the intinite series

$$
\frac{x}{x+1}+\frac{x^{2}}{(x+1)\left(x^{2}+1\right)}+\frac{x^{4}}{(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)}+\cdots
$$

THE HINTS

Still shrouded in the darkesl niçhl, we lexok to the East with raphertation: a hint of a bright nev; dny.

Aleksander Sergecvich Pushkin (1799-1837)

1. Let

$$
N(k)=\sum_{\substack{i, j=1 \\ r_{i}+n, \equiv k(\bmod p)}}^{(p-1) / 2} 1, \quad k=0,1, \ldots, p-1
$$

and prove that

$$
N(k)=N(1), \quad k=1,2, \ldots, p-1
$$

Next, evaluate $N(0)$ and $N(1)$, and then deduce the value of $E(p)$ from

$$
E(p)=\sum_{k=0}^{p-1} \omega^{k} N(k)
$$

2. Prove that

$$
N(k)=\sum_{x} \sum_{y} \sum_{z} 1
$$

where the variable x is summed from $-k$ to k; the variable y is summed from $\max (-k, x-k)$ to $\min (k, x+k)$; and the variable z is summed from
$\max (-k, x-k, y-k)$ to $\min (k, x+k, y+k)$. Then express the triple sum as the sum of six sums sperified arcording to the relative sizes of $0, x$ and y.
3. Jiirst use the fact that $w^{2} \equiv 1(\bmod p)$ to prove that there are integers a and c such that $p=a^{2}+c^{2}$. Then lct s and t be integers such that $a t \cdots c s-1$. Jrove that as $+c t \equiv f w(\bmod p)$, where $f= \pm 1$, and deduce that an integer g can be found so that $b(-s-a g)$ and $d(-t-c g)$ satisfy $a b+c d=\int u, u d-b c=1$ and $b^{2}+d^{2}-\left(w^{2}+1\right) / p$.
4. Prove that

$$
\sum_{n=1}^{m}\left(d_{1}(n)-d_{3}(n)\right)=\sum_{n=1}^{m} \sum_{\substack{d \mid n \\ d \text { odd }}}(-1)^{(d-1) / 2}
$$

and theu interchange the order of summation of the sums on the right side.
5. Rule out the possibilities $x \equiv 0(\bmod 2)$ and $x \equiv 3(\bmod 4)$ by congruence considerations. If $x \equiv 1(\bmod 4)$, prove that there is at least one prime $p=3(\bmod 4)$ dividing $x^{2}-3 x+9$. Deduce that p divides $x^{3}+27$, and then obtain a contradiction.
6. Use the identity

$$
\begin{aligned}
& f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)= \\
& \quad\left(a x_{1} x_{2}+b x_{1} y_{2}+b x_{2} y_{1}+c y_{1} y_{2}\right)^{2}+(a c-b)^{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}
\end{aligned}
$$

together with simple inequalitics.
7. Prove that exactly one of the triples

$$
(a, b, c)=(R, S, T),(T,-S+2 T, R-S+T),(R-S+T, 2 R-S, R),
$$

satisfics

$$
a \leq b<c, \quad \text { or } \quad a \geq b>c,
$$

by considering cases depending upon the relative sizes of R, S and T.
8. C.omsider the sign of the discriminant of

$$
(a B-b A) x^{2}+2(a C-c A) x y+(b c ;-c B) y^{2} .
$$

9. Prove that the quamity

$$
\left|\frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}-\sum_{k=0}^{n-1} \frac{1}{2^{k}}\right|
$$

tends to zero as $n \rightarrow \infty$.
10. Consider the case when $n=p+1$ and $m=p$, where p is a prime suitably large compared with c.
11. Assume that $2 D\left(D+A_{1} A_{2}+\epsilon B_{1} B_{2}\right)$ is a square, where $\varsigma= \pm 1$. If D is odd, show that

$$
\left\{\begin{array}{rl}
D+A_{1} A_{2}+\epsilon B_{1} B_{2} & =2 D V^{2} \\
D-A_{1} A_{2}-\epsilon B_{1} B_{2} & =2 D V^{2} \\
A_{1} B_{2}-\epsilon A_{2} B_{1} & =2 D U V
\end{array},\right.
$$

Deduce that $U^{2}+V^{2}=1$. Then consider the four possibilitics $(U, V)=$ $(\pm 1,0),(0, \pm 1)$. The case D even can be treated similarls.
12. Set

$$
\alpha_{ \pm}=\sqrt{1985 \pm 31 \sqrt{1985}}, \quad \beta_{ \pm}=\sqrt{3970 \pm 61 \sqrt{1985}},
$$

and prove that

$$
\alpha_{+}+\alpha_{-}=\beta_{+}, \quad \alpha_{+}-\alpha_{-}=\beta_{-} .
$$

13. If (x, y) is a solution of (13.0), prove that

$$
x^{2}+x y-y^{2}= \pm F,
$$

and then solve the system of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=k \\
x^{2}+2 x y+2 y^{2}=l \\
x^{2}+x y-y^{2}= \pm F
\end{array}\right.
$$

for $x^{2}, x y$ and y^{2}.
14. Factor the left side of (14.0).
15. Make the following argument mathematically rigorous:

$$
\begin{aligned}
\int_{0}^{1} \ln x \ln (1-x) d x & =-\int_{0}^{1} \ln x \sum_{k=1}^{\infty} \frac{x^{k}}{k} d x \\
& =-\sum_{k=1}^{\infty} \frac{1}{k} \int_{0}^{1} x^{k} \ln x d x \\
& =\sum_{k=1}^{\infty} \frac{1}{k(k+1)^{2}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k(k+1)}-\sum_{k=1}^{\infty} \frac{1}{(k+1)^{2}} \\
& =1-\left(\frac{\pi^{2}}{6}-1\right) \\
& =2-\frac{\pi^{2}}{6}
\end{aligned}
$$

16. Taking $n=1,2, \ldots, 6$ in (16.0), we obtain

$$
\begin{array}{ll}
a(1)=1 / 2, & a(2)=-1 / 3, \\
a(4)=-1 / 5, & a(5)=1 / 6, \\
a(6)=-1 / 1
\end{array}
$$

This suggests that $a(n)=(-1)^{n+1} /(n+1)$, which can be proved by induction on n.
17. Consider three cases according to the following values of the legendre symbol:

$$
\begin{aligned}
\left(\frac{n^{2}+k}{p}\right) & =1 \text { or }\left(\frac{(n+1)^{2}+k}{p}\right)=1 \\
\text { or }\left(\frac{n^{2}+k}{p}\right) & =\left(\frac{(n+1)^{2}+k}{p}\right)=-1
\end{aligned}
$$

In the third case, the identity

$$
\left(n^{2}+n+k\right)^{2}+k=\left(n^{2}+k\right)\left((n+1)^{2}+k\right)
$$

is useful.
18. Rearrange the terms of the partial sum

$$
\sum_{n=0}^{N}\left(\frac{1}{4 n+1}+\frac{1}{4 n+3}-\frac{1}{2 n+2}\right)
$$

and then let $N \rightarrow \infty$.
19. Use

$$
\left(\frac{A_{n}}{n}\right)^{2}=\left(a_{n}+\frac{A_{n}}{n}-a_{n}\right)^{2} \leq 2 a_{n}^{2}+2\left(\frac{A_{n}}{n}-a_{n}\right)^{2}
$$

to prove that

$$
\sum_{n=1}^{m}\left(\frac{\Lambda_{n}}{n}\right)^{2} \leq 1 \sum_{n=1}^{m} a_{n}^{2}+2 \sum_{n=1}^{m}\left(\frac{A_{n}}{n}\right)^{2}-4 \sum_{n=1}^{m} \frac{a_{n} \Lambda_{n}}{n} .
$$

Then use

$$
-2 a_{n} A_{n}=\left(\begin{array}{lll}
A_{n}^{2} & A_{n}^{2} & 1
\end{array}\right)-a_{n}^{2} \leq-\left(A_{n}^{2}-A_{n-1}^{2}\right)
$$

Io prove that

$$
-2 \sum_{n=1}^{m} \frac{a_{n} \cdot A_{n}}{n} \leq-\sum_{n=1}^{m} \frac{\Lambda_{n}^{2}}{n(n+1)}
$$

Putting these Iwo incqualities together, deduce that

$$
\sum_{n=1}^{m}\left(1-\frac{2}{n+1}\right)\left(\frac{\Lambda_{n}}{n}\right)^{2} \leq 4 \sum_{n=1}^{m} a_{n}^{2}
$$

20. Lise the identity

$$
\frac{\binom{n}{k}}{\binom{2 n-1}{k}}=2\left(\frac{\binom{n}{k}}{\binom{2 n}{k}}-\frac{\binom{n}{k+1}}{\binom{2 n}{k+1}}\right) .
$$

21. All integral solutions of $a x+b y=k$ are given by

$$
x=g+b t, \quad y=h-a t, \quad t=0, \pm 1, \pm 2, \ldots,
$$

where (g, h) is a particular solution of $a x+b y=k$.
22. Prove that

$$
u_{k}=v_{k-1}-v_{k}, \quad k=0,1, \ldots,
$$

where

$$
v_{k}=\frac{1}{(a+(k+1) d) \cdots(a+(k+r) d) r d}, \quad k=-1,0,1, \ldots
$$

23. Prove that the stronger inerpality

$$
P^{\prime}\left(x_{12}, x_{1: ;}, \ldots, r_{n} \cdot 1 n\right) \leq \sum_{k=1}^{n} x_{i k}^{2} \quad \frac{1}{n}\left(\sum_{k=1}^{\infty} x_{1}\right)^{2}
$$

holds by replacing each x_{i} by $x_{i}-M$ for suitable $M-M\left(x_{1}, \ldots, x_{n}\right)$ in (23.0).
24. Apply the Cauchy-Schware inequality to

$$
\sum_{n=1}^{m} a_{n} \sqrt{n} \frac{1}{\sqrt{n}} .
$$

25. Consider the integers $(3 m+2)^{2}, m=1,2 \ldots$.
26. Use the identity
$\arctan \left(\frac{2}{n^{2}}\right)=\arctan \left(\frac{1}{n-1}\right)-\arctan \left(\frac{1}{n+1}\right), \quad n=2.3, \ldots$.
27. Suppose that $g_{n}(x)=h(x) k(x)$, where $h(x)$ and $k(x)$ are nonconstant polynomials with integral coefficients. Show that $h(x)$ and $k(x)$ can be taken to be positive for all real x, and that $h\left(p_{i}\right)=k\left(p_{i}\right)=1, i=$ $1,2, \ldots, n$. Deduce that $h(x)$ and $k(x)$ are hoth of degree n, and determine the
form of both $h(x)$ and $k(x)$. Obtain a contradiction by equating appropriate coefficients in $g_{\mathrm{n}}(x)$ and $h(x) k(x)$.
28. Let $p(k), k=0,1, \ldots$, denote the probability that A wins when A has k dollars. Prove the recurrence relation

$$
a p(k+2)-(a+b) p(k+1)+b p(k)=0 .
$$

29. If x_{1}, \ldots, x_{n} are the n roots of $f(x)$, the $2 n$ roots of $f\left(x^{2}\right)$ are •

$$
\pm \sqrt{x_{1}}, \pm \sqrt{x_{2}}, \ldots, \pm \sqrt{x_{n}}
$$

30. Find a point P such that any two different lattice point must be at different distances from P. Then consider the lattice points sequentially according to their increasing distances from P.
31. Determine the generating function

$$
\sum_{n=0}^{\infty} S(n) t^{n}
$$

32. As $f(x)$ is bounded on $(0, a)$ there exists a positive constant K such that

$$
|f(x)|<K, \quad 0<x<a .
$$

Use (32.0) to deduce successively that

$$
\begin{cases}|f(x)|<K / n, & 0<x<a, \\ |f(x)|<K / n^{2}, & 0<x<a, \\ \cdots \\ \text { etc. } & \end{cases}
$$

33. Consider the derivative of the function

$$
f(x)=\frac{\left(y_{1}-y_{2}\right)\left(y_{3}-z\right)}{\left(y_{1}-y_{3}\right)\left(y_{2}-z\right)}
$$

34. Set $a_{1}=1$. Prove the recurrence relation

$$
a_{n+1}=a_{1} a_{n}+a_{2} a_{n-1}+\cdots+a_{n-1} u_{2}+a_{n} a_{1}
$$

and use it to show that the generating function $A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ satisfics $A(x)^{2}=A(x)-x$. Then solve for $\Lambda(x)$.
35. Use l'Hôpital's rule, or use the inequality

$$
t \leq \tan t \leq t+t^{3}, \quad 0 \leq t \leq 1
$$

to estimate the integral $\int_{0}^{\pi} \tan (y \sin x) d x$.
36. Use a result due to Hurwitz, namely, if θ is an irrational number, there are infinitely many rational numbers a / b with $b>0$ and $G C \cdot D(a, b)=1$ such that

$$
|\theta-a / b|<1 /\left(\sqrt{5} b^{2}\right) .
$$

37. Differentiate (37.0) with respect to x and y to obtain

$$
\left(1+x^{2}\right) f^{\prime}(x)=\left(1+y^{2}\right) f^{\prime}(y)
$$

38. Introduce a coordinate system and use simple inequalities to show that $\max S=4 R$ and $\min S=2 R$, where R is the radius of the circle.
39. Prove that

$$
\bigcup_{n=1}^{\infty}\left(\bigcap_{k-1}^{\infty} A_{n+k}\right)=X \cap Y
$$

and

$$
\bigcap_{n=1}^{\infty}\left(\bigcup_{k=1}^{x_{1}} \cdot I_{n+k}\right)=x \cup Y,
$$

where

$$
X-\{0,2,4, \ldots\}, \quad Y=\{0,3,6, \ldots\}
$$

40. Prove that

$$
p_{k}= \begin{cases}0 & , 0 \leq k \leq n-1 \\ p^{n} & , k=n \\ q p^{\prime \prime} & , n+1 \leq k \leq 2 n\end{cases}
$$

and

$$
p_{k}=\left(1-\sum_{i=0}^{k-n-1} p_{i}\right) q p^{n}, \quad k>2 n .
$$

Use these to find a lincar equation satisfied by $P(x)$.
41. First prove that the circumradius of a triangle with sides of length l, m and n is given by

$$
\frac{l m n}{\sqrt{(l+m+n)(l+m-n)(l-m+n)(-l+m+n)}} .
$$

Next show that

$$
|A C|=\sqrt{\frac{(a c+b d)(a d+b c)}{(a b+c d)}}
$$

Finally, apply the above two results to $\triangle A B C$.
42. Consider the quadrilateral $A B C D$ as lying in the complex plane. Represent the vertices $A, B,(C, D)$ by the complex numbers a, b, c, d respertively. Prove that P, Q, R, S are represented by the numbers

$$
\left\{\begin{array}{ll}
\left(\frac{1-i}{2}\right.
\end{array}\right)(a+i b), \quad\binom{\left.\frac{1-i}{2}\right)(b+i c)}{\frac{1-i}{2}}(c+2 d), \quad\left(\frac{1-i}{2}\right)(d+i l), ~ l
$$

respectively. Then melate $\ell \quad r$ and $\|$ *
43. Try a solution of the form

$$
p=r y+X, \quad q=y+Y,
$$

where X and Y are polynomials in x, w and z. Substitute in (43.0) and solve the resulting equations for X and Y.
44. Set $\alpha=f(1)$ and $\beta=f(i)$. Prove that $|\alpha|=|\beta|=1,|\alpha-\beta|=\sqrt{2}$. Deduce that $\alpha^{2}+\beta^{2}-0$ so that $\beta=\epsilon \alpha, \epsilon= \pm i$. Next from (44.0) deduce that

$$
\left\{\begin{array}{l}
\bar{\alpha} f(z)+\alpha \overline{f(z)}=z+\bar{z} \\
\bar{\alpha} f(z)-\alpha \overline{f(z)}=-\epsilon i z+\epsilon i \bar{z}
\end{array}\right.
$$

Now solve for $f(z)$.
45. Iet x be a rational number such that $y=\tan \pi x$ is rational. Prove that $z=2 \cos 2 \pi x$ is a rational root of a monic polynomial with integral coeffirients. Deduce that $z=0, \pm 1, \pm 2$.
46. Iet S_{1}, S_{2}, S_{3} denote the areas of $\triangle P B C, \triangle P C A, \triangle P A B$ respertively. Prove that

$$
\frac{|P A|}{|P D|}=\frac{S_{2}+S_{3}}{S_{1}}
$$

with similar expressions for $\left|\frac{P B \mid}{|P E|}\right|$ and $\frac{|P C|}{|P F|}$.
47. Prove that the (i, j)-th entry of N is l times the (i, j) thi entry of M modulo n.
48. There are $(N+1)^{n}$ vectors $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of integers satisfying $0 \leq y_{j} \leq N, 1 \leq j \leq n$. For each of these vectors the corresponding value of

$$
L_{i}=L_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=a_{i 1} y_{1}+\cdots+a_{i n} y_{n}, l \leq i \leq m,
$$

satisfies -naN $\leq L_{i} \leq n a N$, so the vector ($L_{1}, L_{2}, \ldots, L_{m}$) of integers can take on at most $(2 n a N+1)^{m}$ different values. Choose N appropriately and apply Dirichlet's box principle.
49. Suppose that $\int e^{-x^{2}} d x$ is an elementary function, so that by Liouville's result, there is a rational function $p(x) / q(x)$, where $p(x)$ and $q(x)$ are polynomials with no common factor, such that

$$
\int e^{-x^{2}} d x=\frac{p(x)}{q(x)} e^{-x^{2}}
$$

Differentiate both sides to obtain

$$
p^{\prime}(x) q(x)-p(x) q^{\prime}(x)-2 x p(x) q(x)=q(x)^{2},
$$

and deduce that $q(x)$ is a nonconstant polynomial. Let c denote one of the complex roots of $q(x)$ and obtain a contradiction by expressing $q(x)$ in the form $q(x)=(x-c)^{m} r(x)$, with $r(x)$ not divisible by $(x-\mathrm{c})$.
50. Prove that

$$
x_{n}=\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i+1}, \quad n=1,2, \ldots .
$$

51. Let p_{k} denote the k-th prime. Suppose that $N>121$ is an integer with the property (51.0). Let p_{n} be the largest prime less than or equal to \sqrt{N}, so that $n \geq 5$, and $N<p_{n+1}^{2}$. Use property (51.0) to obtain the inequality $N \geq p_{1} p_{2} \cdots p_{n}$. Then use Bertrand's postulate

$$
p_{k+1} \leq 2 p_{k}, k=1,2, \ldots,
$$

to obtain

$$
p_{1} p_{2} \cdots p_{n-2}<8
$$

from the inequality $p_{1} p_{2} \cdots p_{n}<p_{n+1}^{2}$. Deduce the contradiction $n \leq 4$. Check property (51.0) for the integers $N-3,4, \ldots, 121$ directly.
52. Prove that

$$
S=\int_{0}^{1} \frac{x^{2}+x+1}{x^{4}+x^{3}+x^{2}+x+1} d x
$$

and then use partial fractions to evaluate the integral.
53. Let $|A B|=2 c,|B C|=2 a,|C A|=2 b$. Show that

$$
l=\sqrt{(a-b+c)(a+b-c)}
$$

with similar expressions for m and n.
54. Evaluate

$$
\begin{aligned}
& H(1,1,0,0), \quad H(0,0,1,1), \\
& H(0,1,1,0), \\
& H(1,0,0,1),
\end{aligned}
$$

using (i) and (iii). Then express $H(a, b, c, d)$ in terms of these quantities by means of (i),(ii),(iii) and (iv).
55. Set $f(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$ and note that for $z \neq 0$ we have

$$
|f(z)|=\left|z^{n}\left(1+\frac{a_{1}}{z}+\cdots+\frac{a_{n}}{z^{n}}\right)\right|
$$

$$
\begin{aligned}
& =\left|z^{n}\right|\left|1+\frac{a_{1}}{z}+\cdots+\frac{a_{n}}{z^{n}}\right| \\
& \geq\left|z^{n}\right|\left(1-\frac{\left|a_{1}\right|}{|z|}-\cdots-\frac{\left|a_{n}\right|}{|z|^{n}}\right) \\
& \geq\left|z^{n}\right|\left(1-\frac{\Lambda}{|z|} \cdots-\frac{\Lambda}{|z|^{n}}\right) .
\end{aligned}
$$

56. Definc internels $1:$ and $/$ bex

$$
2^{m}-1=k d, \quad 2^{n}+1=l d,
$$

and then consider

$$
2^{m n}=(k \cdot d+1)^{n}-(l d-1)^{m}
$$

57. Suppuse that $f(x)=g(x) h(x)$, where $g(x)$ and $h(x)$ are nonconstant polynomials with integral coefficients chosen so that

$$
\operatorname{deg}(g(x)) \leq \operatorname{deg}(h(x)) .
$$

Deduce that $\operatorname{deg}(g(x)) \leq m$ and that $g\left(k_{t}\right)= \pm 1, i=1,2 \ldots, 2 m+1$. Let $c=+1$ (resp. -1) if +1 (resp. -1) occurs at least $m+1$ times among the values $g\left(k_{i}\right)= \pm 1, i=1,2, \ldots, 2 m+1$. Then consider the polynomial $g(x)-c$.
58. Suppose a, b, c, d are integers, not all zero, satisfying (58.0). Show that without loss of generality a, b, c, d may be taken to satisfy

$$
G C D(a, b, c, d)=1
$$

By considering (58.0) modulo 5 prove that

$$
a \equiv b \equiv c \equiv d \equiv 0(\bmod 5)
$$

59. Consider the integers $72 k+42, k=0,1, \ldots$.
60. Use the identity

$$
2^{k} \sin k x \cos ^{k} x-\sum_{r=1}^{k}\binom{k}{r} \sin 2 r a
$$

61. Express

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

as the difference of two binomial coefficients.
62. Lise the identity

$$
\frac{2^{n}}{a^{2^{n}}+1}=\frac{2^{n}}{a^{2}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}, \quad a>1
$$

63. Prove that

$$
a_{n}=2(-1)^{n-1} \frac{1}{n}\binom{2 n-2}{n-1}\left(\frac{k}{4}\right)^{n}
$$

and appeal to Problem 61.
64. Let $C_{1}, C_{2}, \ldots, C_{m}$ denote the columns of M_{m}. Determine a linear combination of $C_{1}, C_{2}, \ldots, C_{m-1}$ which when added to C_{m} gives the column $(0,0, \ldots, \phi(m))^{t}$. Deduce that det $M_{m}=\phi(m) \operatorname{det} M_{m-1}$.
65. Assume (65.0) holds and use congruences modulo 8 to obtain a contradiction.
66. Prove that

$$
a_{n}=\int_{0}^{1} \frac{(-1)^{n-1} x^{n}}{1+x} d x
$$

and use this representation of a_{n} to deduce that

$$
\left|\sum_{n=1}^{N} a_{n}-\int_{0}^{1} \frac{x}{(1+x)^{2}} d x\right| \leq \frac{1}{N+2}
$$

67. Let A be a sequence of the required typc, and let k denote the number of zeros in A. First prove that $k=3$. Deduce that $A=$ $\left\{0,0,0, a_{3}, a_{4}, a_{5}, 3\right\}$, where $1 \leq a_{3} \leq a_{4} \leq a_{5} \leq 3$. Then prove that $N_{1}=2$.
68. Prove that

$$
g^{n} h g^{-n}=h^{2^{n}}, \quad n=1,2, \ldots, 5 .
$$

69. Prove that every integer $N>2 a b$ is of the form

$$
N=x a+y b, \quad x \geq 0, \quad y \geq 0, \quad x+y \equiv 1(\bmod 2)
$$

and that all integers of this form bclong to S.
70. If m is cuen, say $m=2 n$, show that

$$
m=(a n+b)^{2}+(c n+d)^{2}-5(c n+f)^{2}
$$

for suitable constants a, b, \ldots, f. The case m odd is treated similarly.
71. Note that

$$
\begin{aligned}
& \frac{\ln 2}{2}-\frac{\ln 3}{3}+\frac{\ln 4}{4}-\cdots+\frac{\ln 2 n}{2 n} \\
& \quad=\ln 2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)+\sum_{k=1}^{n} \frac{\ln k}{k}-\sum_{k=1}^{2 n} \ln k \\
& k
\end{aligned}
$$

and estimate $\sum_{k=1}^{n}(\ln k) / k$ for large n usiug the Buler-Mad !aurin summation formula.
72. Express $(\sqrt{k+1}-\sqrt{k})^{3}$ in the form $\sqrt{p(k)+1}-\sqrt{p(k)}$, where $p(k)$ is a cubic polynonial in k.
73. Choose a_{1} to be any nonzero integer such that $a_{1} \equiv a(\bmod n)$. Then set $b_{1}=b+r n$, where r is the product of those primes which divide a_{1} but do not divide either b or n. Prove that $\operatorname{GCD}\left(a_{1}, b_{1}\right)=1$.
74. Prove that $s(n+1) \equiv 2 s(n)(\bmod 3)$, and use this conguence to show that there are no positive integers n satisfying $s(n)=s(n+1)$.

75. Show that

$$
S=\sum_{m, n=1}^{\infty} \frac{1}{m n(m+n)} / \sum_{d=1}^{\infty} \frac{1}{d^{3}}
$$

by collecting together those m, n in the sum $A=\sum_{m, n=1}^{\infty} 1 /(m n(m+n))$ having the same value for $\operatorname{CCD} D(m, n)$. Then evaluate the sum A by proving that it is equal to the integral

$$
\int_{0}^{1} \frac{\ln ^{2}(1-x)}{x} d x
$$

which can be evaluated by means of the transformation $x=1-e^{-u}$.
76. Apply the intermediate value theorem to the function $T(x)$ defined to be the time taken in minutes by the racer to run from the point x. miles along the course to the point $x+2$ miles aloug the course.
77. Choose a coordinate system so that

$$
A=(-1,0), \quad O=(0,0), \quad B=(1,0) .
$$

Then $R=(-a, 0)$ with $0<a<1$. Deduce that

$$
\begin{aligned}
& C=(1-2 a, 0), \\
& S=(1-a, 0) \\
& D=(1-2 a, 2 \sqrt{a(1-a)}), \\
& P=\left(2 a^{2}-4 a+1,2(1-a) \sqrt{a(1-a)}\right), \\
& Q=\left(1-2 a^{2}, 2 a \sqrt{a(1-a)}\right),
\end{aligned}
$$

and calculate the slopes of $P C, P D, Q C$ and $Q D$.
78. Let I denote the $n \times n$ identity matrix. Set $U=S+I$. Prove that $U^{2}=n U$. Seek an inverse of S of the form cll $-I$.
79. Replace $\cos (k \pi / n)$ by $\left(\omega^{k}+\omega^{-k}\right) / 2$, where $\omega=\exp (\pi i / n)$, and use the binomial theorem.
80. Let $A=\left[\begin{array}{rr}-1 & 1 \\ 0 & -2\end{array}\right]$ and show that $A^{3}+3 A^{2}+2 A=0$. Then consider $(A+I)^{3}$.
81. Let the sides of the triangles be a, b, c and b, c, d. The two triangles
are sinnilar if $a / b=b / c=c / d$. Choose positive integers to satisfy this relation remembering that the triangle inequalities $c<a+b$, etc must be satisfied.
82. Apply the mean value theorem to $f(x)$ on the intervals (a, b) and (b, c).
83. I'irst show that $\lim _{n \rightarrow \infty} m a_{n}-0$. Then let $n \cdots \infty$ in

$$
\sum_{k=1}^{n} k\left(a_{k}-a_{k+1}\right)=\sum_{k=1}^{n \prime} a_{k} \quad n a_{n+1} .
$$

84. Cse the fact that the length of the period of the continued fraction of \sqrt{D} is one, and that D is an odd nonsquare integer >5, to show that $D=4 c^{2}+1, c \geq 2$. Then determine the continued fraction of $\frac{1}{2}(1+\sqrt{D})$.
85. For $x, y \in G$ prove that $\left(x y x^{-1} y^{-1}\right)^{2}=1$.
86. Let λ denote one of the eigenvalues of A and let \underline{x} be a nonzero eigenvector of A corresponding to λ. By applying simple inequalities to an appropriate row of $A \underline{x}=\lambda \underline{x}$, deduce that $|\lambda-1| \leq 1$. Then use the fact that A is real symnetric and the relationship between $\operatorname{det} A$ and the eigenvalues of A.
87. Show that there exists an integer $k \geq 2$ such that $r=r^{k}$. Then prove that r^{k-1} is a multiplicative identity for R.
88. Vor $1 \leq k \leq l \leq n$ let $S^{\prime}(k, l)$ denote the set of subsets of J_{n} with $\min _{s \in S} S=k$ and $\max _{s \in S} S=l$. Evaluate $|S(k, l)|$ and then compute
$\sum_{\phi \neq S \subseteq J_{n}} w(S)$ using

$$
\sum_{\phi \neq S \subseteq J_{n}} w(S)=\sum_{1 \leq k<l \leq n}(l-k)|S(k, l)|
$$

89. Write n in binary notation, say,

$$
n=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}
$$

where a_{1}, \ldots, a_{k} are integers such that $a_{1}>a_{2}>\cdots>a_{k} \geq 0$, and then use

$$
\begin{aligned}
& (1+x)^{2^{a}} \equiv 1+x^{2^{a}}(\bmod 2), \\
& (1+x)^{n}=(1+x)^{2^{a_{1}}}(1+x)^{2^{a_{2}}} \cdots(1+x)^{2^{a_{k}}} .
\end{aligned}
$$

90. Suppose that $x_{i}, 1 \leq i \leq n$ belongs to the r_{i}-th row and the s_{i}-th column. Show that

$$
\sum_{i=1}^{n} x_{i}=n \sum_{i=1}^{n} r_{i}-n^{2}+\sum_{i=1}^{n} s_{i}
$$

and then use the fact that both $\left\{r_{1}, \ldots, r_{n}\right\}$ and $\left\{s_{1}, \ldots, s_{n}\right\}$ are permutations of $\{1,2, \ldots, n\}$.
91. Let $N_{x x}, N_{x o}, N_{o x}, N_{\infty}$ denote the number of occurrences of XX, XO, OX, 00 respectively. Relate $N_{x x}, N_{x o}, N_{o x}, N_{\infty}$ to a, b, p, q. Prove that $N_{o x}=N_{x o}$, and deduce the value of $a-b$ in terms of p and q.
92. Consider the entries of the triangular array modulo 2. Show that the pattern

$$
\begin{array}{llllll}
& & & 1 & 1 & 0 \\
& & 1 & 1 \\
& & 1 & 0 & 0 & 0 \\
& 1 & 1 & 1 & 0 & \\
& 1 & 0 & 1 & 0 & \\
& &
\end{array}
$$

is repeated down the left edge of the array from the fourth row down.
93. Let x_{n+1} be any real number such that $\left|x_{n+1}\right|=\left|x_{n}+c\right|$, and consider $\sum_{i=1}^{n+1} x_{i}^{2}$.
94. If we have $f(x)=g(x) h(x)$ then without loss of generality $g(0)=$ $\pm 1, h(0)= \pm 5$. Prove that one of the complex roots β of $g(x)$ satisfics $|\beta| \leq 1$, and then deduce that $|f(\beta)| \geq 1$.
95. Set

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) .
$$

Prove that

$$
\left(\frac{1}{f^{\prime}\left(a_{1}\right)}, \ldots, \frac{1}{f^{\prime}\left(a_{n}\right)}\right) \quad \text { and } \quad\left(\frac{a_{1}}{f^{\prime}\left(a_{1}\right)}, \ldots, \frac{a_{n}}{f^{\prime}\left(a_{n}\right)}\right)
$$

are two solutions of (95.0). Deduce the general solution of (95.0) from these two solutions.
96. By picking out the terms with $n=N$ in the sum $s(N)$, show that $s(N)=s(N-1)$ for $N \geq 3$.
97. Prove that

$$
L=\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} d x d y
$$

and evaluate the double integral using polar coordinates.
98. For convenience set $p=\pi / 11$, and let $c=\cos p, s=\sin p$. Use the imaginary part of

$$
(c+i s)^{11}=-1
$$

to prove that

$$
\left(11 s-44 s^{3}+32 s^{5}\right)^{2}=11 c^{2}\left(1-4 s^{2}\right)^{2}
$$

Then show that

$$
\tan 3 p+4 \sin 2 p=\frac{11 s-44 s^{3}+32 s^{5}}{c\left(1-4 s^{2}\right)}= \pm \sqrt{11}
$$

Deduce that the + sign holds by cousidering the sign of the left side.
99. Use partial sumnation and the fact that $\lim _{k \rightarrow \infty}\left(c_{k}-\ln k\right)$ exists.
100. Use the identity

$$
\begin{aligned}
& \frac{1}{(x-1)} \frac{x^{2^{n}}}{(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right) \cdots\left(x^{2^{n}}+1\right)} \\
&=\frac{x^{2^{n}}}{\left(x^{2^{n+1}}-1\right)}=\frac{1}{x^{2 n}-1}-\frac{1}{x^{2^{n+1}}-1} .
\end{aligned}
$$

TIIE SOLUTIONS

Some prople think we are urong, but only time will tell: given all the alternatives, ue have the solution.

Lev Davydovich Bronstcin Trotsky (1879-1940)

1. Let p denote an odd prime and set $\omega=\exp (2 \pi i / p)$. Evaluate the product

$$
\begin{equation*}
E(p)=\left(\omega^{r_{1}}+\omega^{r_{2}}+\ldots+\omega^{r_{(p-1)} / 2}\right)\left(\omega^{n_{1}}+\omega^{n_{2}}+\ldots+\omega^{n_{1}(p-1) / 2}\right) \tag{1.0}
\end{equation*}
$$

where $r_{1}, \ldots, r_{(p-1) / 2}$ denote the $(p-1) / 2$ quadratic residues modulo p and $n_{1}, \ldots, n_{(p-1) / 2}$ denote the $(p-1) / 2$ quadratic nonresidues modulo p.

Solution: We set $q=(p-1) / 2$ and

$$
\epsilon= \begin{cases}0, & \text { if } p \equiv 1 \quad(\bmod 4) \tag{1.1}\\ 1, & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and for $k=0,1, \ldots, p-1$ let

$$
\begin{equation*}
N(k)=\sum_{\substack{i, j=1 \\ r_{i}+n_{3} \equiv k(\bmod p)}}^{4} 1 \tag{1.2}
\end{equation*}
$$

If k is a quadratic residue (rcsp. nonresidue) $(\bmod \mathrm{p})\left\{k r_{i}: i=1,2, \ldots, q\right\}$ is a complete system of quadratic residues (resp. nonresidues) (mod p) and $\left\{k n_{j}: j=1,2, \ldots, q\right\}$ is a complete system of quadratic nonresidues (resp. residues) $(\bmod p)$. Meplacing r_{i} hy $k r_{i}$ and n_{j} by $k r_{j}$ in (1.2), where $1 \leq k \leq$ $p-1$, we obtain

$$
\begin{equation*}
N(k)=N(1), k-1,2, \ldots, p-1 . \tag{1.3}
\end{equation*}
$$

Next, we note that

$$
\begin{equation*}
N(0)=\sum_{\substack{i, j=1 \\ r_{i} \equiv-n,(\bmod p)}}^{4} 1=\epsilon q, \tag{1.4}
\end{equation*}
$$

as -1 is a quadratic residue $(\bmod p)$ for $p=1(\bmod 4)$ and -1 is a quadratic nonresidue $(\bmod p)$ for $p \equiv 3(\bmod 4)$. Now as

$$
\begin{equation*}
\sum_{k=0}^{p-1} N(k)=\sum_{i, j=1}^{q} 1=q^{2} \tag{1.5}
\end{equation*}
$$

we obtain, from (1.3), (1.4), and (1.5),

$$
\epsilon q+2 q N(1)=q^{2} .
$$

that is

$$
\begin{equation*}
N(1)=(q-\epsilon) / 2 . \tag{1.6}
\end{equation*}
$$

Finally, we have

$$
\begin{aligned}
E(p) & =\left(\sum_{i=1}^{q} \omega^{r_{i}}\right)\left(\sum_{j=1}^{q} \omega^{n_{j}}\right) \\
& =\sum_{i, j=1}^{q} i^{r_{i}+n_{j}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{p-1} \sum_{\substack{i, j=1 \\
r_{i}+n_{j} \equiv k(\operatorname{mond} p)}}^{q} \omega^{r_{i}+n_{j}} \\
& =\sum_{k=0}^{p-1} \omega^{k} N(k) \\
& -N(0)+N(1)\left(\omega+\omega^{2}+\cdots+\omega^{p} \quad 1\right) \\
& =N(0) \quad N(1) \\
& =c q-(4 \cdot() / 2, \text { bs }(1 . d) \operatorname{and}(1.6),
\end{aligned}
$$

that is

$$
E^{\prime}(p)= \begin{cases}(1-p) / 4, & \text { if } p \equiv 1 \quad(\bmod 4) \\ (1+p) / 4, & \text { if } p \equiv 3 \quad(\bmod 4)\end{cases}
$$

as required.
2. Let k denote a positive integer. Determine the number $N(k)$ of triples (x, y, z) of integers satisfying

$$
\left\{\begin{array}{lll}
|x|<k, & |y| \leq k, & |z| \leq k \tag{2.0}\\
|x-y| \leq k, & |y-z| \leq k, & |z-x| \leq k
\end{array}\right.
$$

Solution: The required number $N(k)$ of triples is given by

$$
\begin{aligned}
& N(k)=\sum_{|x| \leq k} \sum_{\substack{|y| \leq k \\
|x-y| \leq k}} \sum_{\substack{|z| \leq k \\
|y-z| \leq k}} 1 \\
&\left.=\sum_{x=-k}^{|x-x| \leq k}\right\} \\
& k \sum_{\substack{y=-k \\
x-k \leq y \leq x+k}}^{k} 1, \\
& \substack{x-k \leq x \leq x+k \\
y-k \leq z \leq y+k}
\end{aligned}
$$

that is

$$
\begin{equation*}
N(k)=\sum_{x=-k}^{k} \sum_{N} \sum_{z} 1 \tag{2.1}
\end{equation*}
$$

where the serond sum is taken over $y=\max (-k, x-k)$ to $y=\min (k, x+k)$, and the third sum is taken over $z=\max (-k, x-k, y-k)$ to $z=\min (k, x+$ $k, y+k)$. We now split the sum on the right of (2.1) into six sums S_{1}, \ldots, S_{6}, where x and y are restricted as follows:

$$
\begin{array}{ll}
0 \leq x \leq y, & \text { in } S_{1}: \\
x<0 \leq y, & \text { in } S_{2} ; \\
x \leq y<0, & \text { in } S_{3} ; \\
0 \leq y<x, & \text { in } S_{1} ; \\
y<0 \leq x, & \text { in } S_{5} ; \\
y<x<0, & \text { in } S_{6} .
\end{array}
$$

Clearly, we have

$$
\begin{aligned}
S_{1} & =\sum_{x=0}^{k} \sum_{y=x}^{k} \sum_{x=y-k}^{k} 1 \\
& =\sum_{x=0}^{k} \sum_{y=x}^{k}(2 k+1-y) \\
& =\frac{1}{2} \sum_{x=0}^{k}(k+1-x)(3 k+2-x) \\
& =\frac{1}{2} \sum_{x=1}^{k}\left((k+1)(3 k+2)-(4 k+3) x+x^{2}\right) \\
& =\frac{1}{2}\left((k+1)^{2}(3 k+2)-\frac{(4 k+3) k(k+1)}{2}+\frac{k(k+1)(2 k+1)}{6}\right) \\
& =\frac{1}{6}(k+1)(k+2)(4 k+3) .
\end{aligned}
$$

Similarly, with E denoting $k(k+1)(2 k+1) / 3$, we obtain

$$
S_{2}=\sum_{r=-k}^{-1} \sum_{y=1}^{x+k} \sum_{z=y-k}^{x+k} 1=E
$$

$$
\begin{aligned}
& S_{3}=\sum_{x=-k}^{-1} \sum_{y=x}^{-1} \sum_{z=-k}^{x+k} 1=F, \\
& S_{1}=\sum_{x-1}^{k} \sum_{y=0}^{x-1} \sum_{==x-k}^{k} 1=F_{i}, \\
& S_{S} \sum_{x-0}^{k} \sum_{y=x-k}^{-1} \sum_{z=-k}^{y+k} 1=E^{\prime}, \\
& S_{6}=\sum_{x=-k+1}^{-1} \sum_{y=-k}^{x-1} \sum_{z=-k}^{y+k} 1=\frac{1}{6}(k-1) k(4 k+1) .
\end{aligned}
$$

'Thus we have

$$
\begin{aligned}
N(k)= & S_{1}+S_{2}+\cdots+S_{6} \\
= & \frac{1}{6}(k+1)(k+2)(4 k+3)+\frac{4}{3} k(k+1)(2 k+1) \\
& \quad+\frac{1}{6}(k-1) k(4 k+1) \\
= & 4 k^{3}+6 k^{2}+4 k+1 \\
= & (k+1)^{4}-k^{4} .
\end{aligned}
$$

3. Let $p \equiv 1(\bmod 4)$ be prime. It is known that there exists a unique integer $w \equiv u(p)$ such that

$$
w^{2} \equiv-1 \quad(\bmod p), \quad 0<w<p / 2
$$

(For example, $w(5)=2, u(13)=5$.) Prove that there exist integers a, b, c, d with $a d-b c=1$ such that

$$
p X^{2}+2 w X Y+\frac{\left(w^{2}+1\right)}{p} Y^{2} \equiv(a X+b Y)^{2}+(c X+d Y)^{2}
$$

(For example, when $p=5$ we have

$$
5 X^{2}+4 X Y+Y^{2} \equiv X^{2}+(2 X+Y)^{2}
$$

and when $p=13$ we have

$$
\left.13 X^{2}+10 X Y+2 Y^{2} \equiv(3 X+Y)^{2}+(2 X+Y)^{2} .\right)
$$

Solution: We make use of the following property of the reals: if r is any real number, and n is a positive integer, then there exists a rational number h / k such that

$$
\begin{equation*}
\left|\tau-\frac{h}{k}\right| \leq \frac{1}{k(n+1)}, \quad 1 \leq k \leq n, \quad G C D(h, k)=1 \tag{3.1}
\end{equation*}
$$

Taking $r=-w(p) / p$ and $n=[\sqrt{p}]$, we see that there are integers a and e such that

$$
\begin{equation*}
\left|\frac{-w(p)}{p}-\frac{e}{a}\right|<\frac{1}{a \sqrt{p}}, \quad 1 \leq a<\sqrt{p} . \tag{3.2}
\end{equation*}
$$

Setting $c=w(p) a+p e$, we see from (3.2) that $|c|<\sqrt{p}$, and so $0<a^{2}+c^{2}<2 p$. But $c \equiv w a \quad(\bmod p)$, and so $a^{2}+c^{2} \equiv a^{2}\left(1+w^{2}\right) \equiv 0(\bmod p)$, showing that

$$
\begin{equation*}
p=a^{2}+c^{2} \tag{3.3}
\end{equation*}
$$

As p is a prime, we see from (3.3) that $\operatorname{GCD}(a, c)=1$. Hence, we can choose integers s and t such that

$$
\begin{equation*}
a t-c s=1 \tag{3.4}
\end{equation*}
$$

Hence

$$
\begin{aligned}
(a s & +c t-w)(a s+c t+w) \\
& =(a s+c t)^{2}-w^{2} \\
& =\left(a^{2}+c^{2}\right)\left(s^{2}+t^{2}\right)-(a t-c s)^{2}-w^{2} \\
& =p\left(s^{2}+t^{2}\right)-\left(1+w^{2}\right) \\
& \equiv 0(\bmod p),
\end{aligned}
$$

so that

$$
\begin{equation*}
a s+c t \equiv f w(\bmod p), f= \pm 1 \tag{3.5}
\end{equation*}
$$

Hence there is an integer g such that

$$
\begin{equation*}
a s+c t=f w+g p \tag{3.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
b=s-a g, \quad d=t-c g . \tag{3.7}
\end{equation*}
$$

Then, by (3.3), (3.4), (3.6), and (3.7), we have

$$
\begin{equation*}
a b+c d=f w, a d-b c=1 \tag{3.8}
\end{equation*}
$$

We now obtain

$$
\begin{aligned}
p\left(b^{2}+d^{2}\right) & =\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right) \\
& =(a b+c d)^{2}+(a d-b c)^{2} \\
& =w^{2}+1
\end{aligned}
$$

so that

$$
\begin{equation*}
b^{2}+d^{2}=\left(w^{2}+1\right) / p \tag{3.9}
\end{equation*}
$$

Then, from (3.3), (3.8), and (3.9), we have

$$
\begin{equation*}
(a X+b Y)^{2}+(c X+d Y)^{2}=p X^{2}+2 f w X Y+\frac{\left(w^{2}+1\right)}{p} Y^{2} \tag{3.10}
\end{equation*}
$$

If $f=1$ then (3.10) is the required identity. If $f=-1$, replace b, c, Y by $-b,-c,-Y$ respectively to obtain the desired result.
4. Let $d_{r}(n), r=0,1,2,3$, denote the number of positive integral divisors of n which are of the form $4 k+r$. Let m denote a positive integer. Prove that

$$
\begin{equation*}
\sum_{n=1}^{m}\left(d_{1}(n)-d_{3}(n)\right)=\sum_{j=0}^{\infty}(-1)^{j}\left[\frac{m}{2 j+1}\right] . \tag{4.0}
\end{equation*}
$$

Solution: We have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left(d_{1}(n)-d_{3}(n)\right)=\sum_{n=1}^{m} \sum_{\substack{d \mid n \\
d o d d}}(-1)^{(d-1) / 2} \\
& =\sum_{d \text { udd }} \sum_{1 \leq i i k=m}(-1)^{(d-1) / 2} \\
& =\sum_{d \text { uikl }}(-1)^{(d 1) / 2} \sum_{1<k<m / d} 1 \\
& =\sum_{d c d d}(-1)^{(d-1) / 2}\left[\frac{m}{d}\right] \\
& =\quad \sum_{j=0}^{\infty}(-1)^{\rho}\left[\frac{m}{2 j+1}\right] .
\end{aligned}
$$

This completes the proof of (4.0).
5. Prove that the equation

$$
\begin{equation*}
y^{2}=x^{3}+23 \tag{5.0}
\end{equation*}
$$

has no solutions in integers x and y.

Solution: Suppose that (x, y) is a solution of (5.0) in integers. If $x \equiv$ $0(\bmod 2)$ then (5.0) gives $y^{2} \equiv 3(\bmod 4)$, which is impossible. Hence, we must lave $x \equiv 1(\bmod 2)$. If $x \equiv 3(\bmod 4)$ then (5.0) gives $y^{2} \equiv 2(\bmod 4)$, which is impossible. Hence, we see that $x \equiv 1(\bmod 4)$. In this case we have $x^{2}-3 x+9 \equiv 3(\bmod 4)$, and so there is at least one prime $p \equiv 3(\bmod 4)$ dividing $x^{2}-3 x+9$. Since $x^{2}-3 x+9$ is a factor of $x^{3}+27$, we have $x^{3}+27 \equiv 0(\bmod p)$. Thus by (5.0) we have $y^{2} \equiv-4(\bmod p)$. This congruence is insolvable as -4 is not a quadratic residue for any prime $p \equiv 3(\bmod 4)$, showing that (5.0) has no solutions in integers x and y.
6. Let $f(x, y)=a x^{2}+2 h x y+c y^{2}$ be a positive-definite quadratic form.

Prove that

$$
\left(f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)\right)^{1 / 2} f\left(x_{1}-x_{2}, y_{1}-y_{2}\right)
$$

$$
\begin{equation*}
\geq\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \tag{6.0}
\end{equation*}
$$

for all real numbers $x_{1}, x_{2}, y_{1}, y_{2}$.

Solution: First we note that ac $b^{2}>0$ as f is positive-definite. We use the identity

$$
\left(a x_{1}^{2}+2 b x_{1} y_{1}+c y_{1}^{2}\right)\left(a x_{2}^{2}+2 b x_{2} y_{2}+c y_{2}^{2}\right)=
$$

$$
\begin{equation*}
\left(a x_{1} x_{2}+b x_{1} y_{2}+b x_{2} y_{1}+c y_{1} y_{2}\right)^{2}+\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \tag{6.1}
\end{equation*}
$$

Set

$$
\begin{aligned}
& E_{1}=f\left(x_{1}, y_{1}\right) \geq 0, \quad E_{2}=f\left(x_{2}, y_{2}\right) \geq 0, \\
& F=\left|a x_{1} x_{2}+h x_{1} y_{2}+b x_{2} y_{1}+c y_{1} y_{2}\right| \geq 0,
\end{aligned}
$$

and then (6.1) becomes

$$
\begin{equation*}
E_{1} E_{2}=F^{2}+\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \tag{6.2}
\end{equation*}
$$

We also have

$$
\begin{equation*}
f\left(x_{1}-x_{2}, y_{1}-y_{2}\right)=E_{1}+E_{2} \pm 2 F . \tag{6.3}
\end{equation*}
$$

Hence, using (6.2) and (6.3), we obtain

$$
\begin{aligned}
&\left(f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)\right)^{1 / 2} f\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \\
& \geq\left(E_{1} E_{2}^{\prime}\right)^{1 / 2}\left(E_{1}+E_{2}-2 F\right) \\
& \geq\left(E_{1} E_{2}\right)^{1 / 2}\left(2\left(E_{1} E_{2}\right)^{1 / 2}-2 F\right) \\
&= 2\left(E_{1} E_{2}^{\prime}\right)-2\left(E_{1} E_{2}\right)^{1 / 2} F \\
&= 2 F^{2}+2\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \\
&=\left.2 F^{2}+2\left(a c-F^{2}+\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}\right)^{1 / 2}-x_{2} y_{1}\right)^{2} \\
&-2 F^{2}\left(1+\frac{\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}}{F^{2}}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{gathered}
\geq \quad 2 F^{2}+2\left(a c-b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \\
-2 F^{2}\left(1+\frac{\left(a c b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}}{2 F^{2}}\right) \\
=\left(\begin{array}{ll}
(u c & \left.b^{2}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}
\end{array}\right.
\end{gathered}
$$

'Ihis completes the proof of (6.0).
7. Let R, s, T be three real mumbers, not all the same. Give a condilion which is satisfion by onc and ouls one of the chrow triples

$$
\left\{\begin{array}{l}
(R, S, T) \tag{7.0}\\
(T,-S+2 T, R-S+T) \\
(R-S+T, 2 R-S, R)
\end{array}\right.
$$

Solution: We let (a, b, c) denote any one of the triples in (7.0) and show that exactly one of the three triples satisfies
(i) $a \leq b<c$ or
(ii) $a \geq b>c$.

We consider six cases.
Case (i): $R \leq S<T$. Here (a, b, c) $=(R, S, T)$ satisfies (7.1)(i) but not (7.1)(ii), while the other two triples satisfy neither (7.1)(i) nor (ii) as

$$
T<-S+2 T, \quad-S+2 T>R-S+T
$$

and

$$
R-S+T>2 R-S, \quad 2 R-S<R
$$

Case (ii): $\quad R<T \leq S$. Here $(a, b, c)=(T,-S+27 . R-S+T)$ satisfies (7.1)(ii) but not (7.1)(i), while the other two triples satisfy neither (7.1)(i) nor (ii) as

$$
R<S, \quad S>T
$$

and

$$
R-S+T>2 R-S, \quad 2 R-S<R
$$

(Gase (iii): $S<R \leq T$. IIere ($a, b, c)=(R-S+T, 2 R-S, R)$ satisfies (7.1)(ii) but not (7.1)(i), while the other two triples satisfy neither (7.1)(i) nor (ii) as

$$
R>S . \quad S<T
$$

and

$$
T<-S+2 T, \quad-S+2 T>R-S+T
$$

Casc (iv): $S \leq T<R$. Here $(u, b, c) \cdots(I .-S+2 T . R-S+T)$ salistic: (i.1)(i) but not (7.1)(ii), while the oiher two triples satisly ncither (7.1)(i) nor (ii) as

$$
R>S, \quad S \leq T
$$

and

$$
R-S+T<2 R-S, \quad 2 R-S>R .
$$

Case (v): $T \leq R<S$. Here $(a, b, c)=(R-S+T, 2 R-S, R)$ satisties (7.1)(i) but not (7.1)(ii), while the other two triples satisfy neither (7.1)(i) nor (ii) as

$$
R<S, \quad S>T
$$

and

$$
T>-S+2 T, \quad-S+2 T<R-S+T
$$

Case(vi): $\quad T<S \leq R$. IIere (a, b, c) $=(R, S, T)$ satisfies (7.1)(ii) but not (7.1)(i), while the other two triples satisfy neither (7.1)(i) nor (ii) as

$$
T>-S+2 T, \quad-S+2 T<R-S+T
$$

and

$$
R-S+T<2 R-S, \quad 2 R-S \geq R .
$$

8. Let $a x^{2}+b x y+c y^{2}$ and $A x^{2}+B x y+C y^{2}$ be two positive-definite quadratic forms, which are not proportional. Prove that the form

$$
\begin{equation*}
(a B-b A) x^{2}+2(a C-c A) x y+(b C-c B) y^{2} \tag{8.0}
\end{equation*}
$$

is indefinite.

Solution: As $a x^{2}+b x y+c y^{2}$ and $A x^{2}+B x y+C y^{2}$ are positive-definite wo have

$$
\begin{array}{lll}
a>0, & c>0, & b^{2}-4 a r<0, \\
A>0, & C>0, & B^{2}-4 A C!<0 .
\end{array}
$$

To show that the form

$$
(a B-b A) x^{2}+2\left(a(;-c A) x y+\left(b(;-r B) y^{2}\right.\right.
$$

is indolinite: we must show that its diseriminant

$$
D=4(a C-c A)^{2}-4(a B-b A)(b C-c B)
$$

is positive. We first show that $D \geq 0$. This follows as

$$
a^{2} D=\left(2 a(a(;-c A)-b(a B-b A))^{2}-\left(b^{2}-4 a c\right)(a B-b A)^{2} .\right.
$$

Moreover, $D>0$ unless

$$
a B-b A=a C-c A=0
$$

in which case

$$
\frac{a}{A}=\frac{b}{B}=\frac{c}{C^{\prime}} .
$$

This does not occur as $a x^{2}+b x y+c y^{2}$ and $A x^{2}+B x y+C y^{2}$ arc not proportional.
9. Evaluate the limit

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k} \tag{9.0}
\end{equation*}
$$

Solution: We show that $L=2$. For $n \geq 3$ we have

$$
\frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=\frac{n}{2^{n}} \sum_{k=0}^{n-1} \frac{2^{n-k}}{n-k}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n-1} \frac{1}{2^{k}} \frac{n}{n-k} \\
& =\sum_{k=0}^{n-1} \frac{1}{2^{k}}\left(1+\frac{k}{n-k}\right) \\
& =\sum_{k=1}^{n-1} \frac{1}{2^{k}}+\sum_{k=1}^{n-1} \frac{k}{2^{k}(n-k)},
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|\frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}-\sum_{k=0}^{n-1} \frac{1}{2^{k}}\right| & =\left|\sum_{k=1}^{n-1} \frac{k}{2^{k}(n-k)}\right| \\
& =\sum_{k=1}^{n-1} \frac{k}{2^{k}(n-k)} \\
& \leq \frac{1}{2(n-1)}+\sum_{k=2}^{n-1} \frac{k}{\left(k^{2}-k\right)(n-k)} \\
& =\frac{1}{2(n-1)}+\sum_{k=2}^{n-1} \frac{1}{(k-1)(n-k)} \\
& =\frac{1}{2(n-1)}+\frac{1}{n-1} \sum_{k=2}^{n-1}\left(\frac{1}{k-1}+\frac{1}{n-k}\right) \\
& =\frac{1}{2(n-1)}+\frac{2}{n-1} \sum_{r=1}^{n-2} \frac{1}{r} \\
& \leq \frac{1}{2(n-1)}+\frac{2}{n-1} \ln n .
\end{aligned}
$$

As $n \rightarrow+\infty, \frac{1}{2(n-1)}+\frac{2}{(n-1)} \ln n \rightarrow 0$ and so

$$
L=\lim _{n \rightarrow \infty} \frac{n}{2^{n}} \sum_{k=1}^{n} \frac{2^{k}}{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \frac{1}{2^{k}}=\sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 .
$$

10. Prove that there does not exist a constant $c \geq 1$ such that

$$
\begin{equation*}
n^{c} \phi(n) \geq m^{c} \phi(m) \tag{10.0}
\end{equation*}
$$

for all positive integers n and m satisfying $n \geq m$.

Solution: Suppose there exists a constant $c \geq 1$ such that (10.0) holds for all positive integers m and n satisfying $n \geq m$. Let p be a prime "in! $p:$ Wr. Then, we havn

$$
\begin{aligned}
\frac{3}{4} & \geq \frac{p+1}{2(p-1)} \quad(\text { as } p>1 c \geq 1) \\
& \geq \frac{\phi(p+1)}{\phi(p)} \quad(\text { as } \phi(p+1) \leq(p+1) / 2, \phi(p)=p-1) \\
& \geq\left(\frac{p}{p+1}\right)^{c} \quad(\text { by }(10.0)) \\
& =\left(1-\frac{1}{p+1}\right)^{c} \\
& \geq 1-\frac{c}{p+1} \quad\left(\text { using } x^{c}-1 \geq c(x-1), x>0\right) \\
& >1-\frac{c}{p} \\
& >\frac{3}{4} \quad(\text { as } p>4 c)
\end{aligned}
$$

which is impossible, and no such cexists.
11. Let D be a squarefree integer greater than 1 for which there exist positive integers $A_{1}, A_{2}, B_{1}, B_{2}$ such that

$$
\left\{\begin{array}{rl}
D= & A_{1}^{2}+B_{1}^{2} \tag{11.0}
\end{array}=A_{2}^{2}+B_{2}^{2},\right.
$$

Prove that neither

$$
\left.2 D(D)+A_{1} A_{2}+B_{1} B_{2}\right)
$$

nor

$$
2 D\left(D+A_{1} A_{2}-B_{1} B_{2}\right)
$$

is the square of an integer.

Solution: Suppose that $2 D\left(D+A_{1} A_{2}+\epsilon B_{1} B_{2}\right)=X^{2}$, where X is an integer aud $s= \pm 1$. We consider two cases according as D is odd or even.

If I) is odd, as it is squarefrec, $2 I$ divides X, say $X=2 D I$, where I : is ant integer. and so

$$
\begin{equation*}
D+A_{1} A_{2}+\epsilon B_{1} B_{2}=2 D U^{2} \tag{11.1}
\end{equation*}
$$

Next we have

$$
\begin{aligned}
2 D\left(D-A_{1} A_{2}-\epsilon B_{1} B_{2}\right) & =2 D \frac{\left(D^{2}-\left(A_{1} A_{2}+\epsilon B_{1} B_{2}\right)^{2}\right)}{D+A_{1} A_{2}+\epsilon B_{1} B_{2}} \\
& =\frac{2 D\left(A_{1} B_{2}-\epsilon A_{2} B_{1}\right)^{2}}{D+A_{1} A_{2}+\epsilon B_{1} B_{2}}
\end{aligned}
$$

that is

$$
\begin{equation*}
2 D\left(D-A_{1} A_{2}-\epsilon B_{1} B_{2}\right)=\left(\frac{A_{1} B_{2}-\epsilon A_{2} B_{1}}{U}\right)^{2} \tag{11.2}
\end{equation*}
$$

Since the left side of (11.2) is an integer and the right side is the square of a rational number, the right side of (11.2) must in fact be the square of an intcger. Hence, there is an integer Z such that

$$
\begin{equation*}
2 D\left(D-A_{1} A_{2}-\epsilon B_{1} B_{2}\right)=Z^{2} \tag{11.3}
\end{equation*}
$$

$$
\begin{equation*}
A_{1} B_{2}-\epsilon A_{2} B_{1}=U^{\prime} Z \tag{11.4}
\end{equation*}
$$

From (11.3), as above, we see that $2 D$ divides Z, so there exists V such that $Z=2 D V$. Then (11.3) and (11.4) become

$$
\begin{equation*}
D-A_{1} A_{2}-\epsilon B_{1} B_{2}=2 D V^{2} \tag{11.5}
\end{equation*}
$$

$$
\begin{equation*}
A_{1} B_{2}-\epsilon A_{2} B_{1}=2 D U V . \tag{11.6}
\end{equation*}
$$

Adding (11.1) and (11.5) we obtain $2 D=2 D U^{2}+2 D V^{2}$, so that $U^{2}+V^{2}=1$, giving

$$
\begin{equation*}
(U, V)=(\pm 1,0) \quad \text { or } \quad(0, \pm 1) \tag{11.7}
\end{equation*}
$$

Now from (11.1), (11.5) and (11.6), we have

$$
\left\{\begin{array}{l}
1_{1} A_{2}+c B_{1} B_{2}=D\left(l^{2} \cdot V^{2}\right), \\
-C B_{1} A_{2}+A_{1} B_{2}=2 D \| V .
\end{array}\right.
$$

Solving these equations for A_{2} and B_{2} gives

$$
\begin{equation*}
A_{2}=\left(U^{2}-V^{\prime 2}\right) A_{1}-2 \epsilon U V D_{1}, \quad B_{2}=2 U V A_{1}+\epsilon\left(U^{2}-V^{2}\right) B_{1} . \tag{11.8}
\end{equation*}
$$

Using the values for (II,V) given in (11.7), we obtain from (11.8) $\left(A_{2}, B_{2}\right)=$ $\pm\left(A_{1}, \epsilon B_{1}\right)$, which is clearly impossible as $\Lambda_{1}, A_{2}, B_{1}, B_{2}$ are positive and $\left(A_{1}, B_{1}\right) \neq\left(\Lambda_{2}, B_{2}\right)$.

The case when D is even can be treated sinilarly.
12. Let \mathbf{Q} and \mathbf{R} denote the fields of rational and real numbers respectively. Let \mathbf{K} and \mathbf{L} be the smallest subfields of \mathbf{R} which rontain both Q and the real numbers

$$
\sqrt{1985+31 \sqrt{1985}} \text { and } \sqrt{3970+64 \sqrt{1985}},
$$

respectively. Prove that $\mathbf{K}=\mathbf{L}$.

Solution: We set

$$
\begin{align*}
& \left\{\begin{array}{l}
\alpha_{+}=\sqrt{1985+31 \sqrt{1985}} \approx 58.018, \\
\alpha_{-}=\sqrt{1985-31 \sqrt{1985}} \approx 24.573,
\end{array}\right. \tag{12.1}\\
& \left\{\begin{array}{l}
3_{+}=\sqrt{3970+64 \sqrt{1985}} \approx 82.591, \\
\beta_{-}=\sqrt{3970-61 \sqrt{1985}} \approx 33.145 .
\end{array}\right. \tag{12.2}
\end{align*}
$$

It is casy to check that

$$
\begin{equation*}
\alpha_{+} \alpha_{-}=32 \sqrt{1985}, \quad \beta_{+} \beta_{-}=62 \sqrt{1985}, \tag{12.3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\left(\alpha_{+}+\alpha_{-}\right)^{2}-3970+61 \sqrt{1985} \tag{12.1}\\
\left(\alpha_{+}-\alpha_{-}\right)^{2}=3970-64 \sqrt{1985}
\end{array}\right.
$$

from which we obtain

$$
\begin{equation*}
\alpha_{+}+\alpha_{-}-\beta_{+} \quad a_{1}-a=a \tag{12.5}
\end{equation*}
$$

Writing $\mathbf{Q}\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ for the smallest sublield of \mathbf{R} containing both \mathbf{Q} and the real numbers $\gamma_{1}, \ldots, \gamma_{n}$, we have

$$
\begin{array}{rlrl}
\mathbf{Q}\left(\alpha_{+}\right) & =\mathbf{Q}\left(\alpha_{+}, \alpha_{+}^{2}\right) & & \\
& =\mathbf{Q}\left(\alpha_{+}, \sqrt{1985}\right) & & (\text { by }(12.1)) \\
& =\mathbf{Q}\left(\alpha_{+}, \alpha_{-}\right) & & (\text {by }(12.3)) \\
& \supseteq \mathbf{Q}\left(\alpha_{+}+\alpha_{-}\right) & & \\
& =\mathbf{Q}\left(\beta_{+}\right) & & (\text {by }(12.5)) \\
& =\mathbf{Q}\left(\beta_{+}, \beta_{+}^{2}\right) & & \\
& =\mathbf{Q}\left(\beta_{+}, \sqrt{198.5}\right) & & (\text { by }(12.2)) \\
& =\mathbf{Q}\left(\beta_{+}, \beta_{-}\right) & & \text {(by (12.3)) } \\
& \supseteq \mathbf{Q}\left(\beta_{+}+\beta_{-}\right) & & \\
& =\mathbf{Q}\left(\alpha_{+}\right), & \text {(by (12.5)) } \tag{12.5}
\end{array}
$$

so that $\mathbf{K}=\mathbf{Q}\left(\alpha_{+}\right)=\mathbf{Q}\left(\boldsymbol{\beta}_{+}\right)=\mathbf{L}$.
13. Let k and l be positive integers such that

$$
G C D(k, 5)=G C D(l, 5)=G C D(k, l)=1
$$

and

$$
-k^{2}+3 k l-l^{2}=F^{2}, \quad \text { wherc } G C D(F, 5)=1
$$

Prove that the pair of equations

$$
\left\{\begin{array}{l}
k=x^{2}+y^{2} \tag{13.0}\\
l=x^{2}+2 x y+2 y^{2}
\end{array}\right.
$$

has exactly two solutions in integers r : and y.

Solution: We have

$$
F^{2}-4 k^{2}+8 k l+4 l^{2} \equiv 4(k+l)^{2} \quad(\bmod 5)
$$

so that $F= \pm 2(k+I) \quad(\bmod 5)$. Replacing l liy $-r$, if necossary, we may suppose that

$$
\begin{equation*}
f \cdot-?(1:+I) \quad(\bmod 5) \tag{13.1}
\end{equation*}
$$

Then we have

$$
\left\{\begin{align*}
4 k-l-2 F & \equiv 0(\bmod 5), \tag{13.?}\\
-3 k+2 l-F & \equiv 0(\bmod 5), \\
k+l+2 F & \equiv 0(\bmod 5),
\end{align*}\right.
$$

and we may define integers R, S, T by

$$
\left\{\begin{array}{l}
5 R=4 k-l-2 F, \tag{13.3}\\
5 . S=-3 k+2 l-F, \\
5 T=k+l+2 F .
\end{array}\right.
$$

lurther, we have

$$
\begin{aligned}
25\left(R T-S^{2}\right) & =(4 k-l-2 F)(k+l+2 F)-(-3 k+2 l-F)^{2} \\
& =-5 k^{2}+15 k l-5 l^{2}-5 F^{2} \\
& =0,
\end{aligned}
$$

so that

$$
\begin{equation*}
R T=S^{2} \tag{13.4}
\end{equation*}
$$

We now treat three cases:
(i) $R=S=0$,
(ii) $R \neq 0, S=0$,
(iii) $S \neq 0$.

Case (i): $\quad R=S=0$. From (13.3) we have $4 k-l-2 F=0$, and $-3 k+$ $2 l-F=0$, so that $k=F, l=2 F$. But k, l are positive coprime integers, so
$f=1, k=1, l=2$. In this case (13.0) has two solutions $(x, y)= \pm(0,1)$.
Case (ii): $R \neq 0, S=0$. From (13.4) we have $T^{\circ}=0$, and so from (13.3) we obtain

$$
\left\{\begin{aligned}
-3 k+2 l-F & =0 \\
k+l+2 f & =0
\end{aligned}\right.
$$

so that $k=l=-F$. As k, l are positive coprime infegers we have $l=-1, k=$ $l=1$. In this rase (13.0) has two solmions ($x,!$) $- \pm(1,0)$.
Case(iii): $S \neq 0$. From (13.4) we have $R T>0$. If $R<0$ then $T<0$ and we have $k=R+T<0$, contiadicting $k \geq 1$. Hence R and I are positive integers. Next, observe that

$$
\left(4 k-l-2 F^{\prime}\right)\left(4 k-l+2 F^{\prime}\right)=(4 k \cdots l)^{2}-4 F^{\prime 2}=5(l-2 k)^{2},
$$

so that

$$
\begin{equation*}
R(4 k-l+2 F)=(l-2 k)^{2} \tag{13.5}
\end{equation*}
$$

Clearly, we have $4 k-l+2 F \neq 0$, otherwise $5 R--4 F$ and so $5 \mid r$, contradicting $G C D(F, 5)=1$. Hence we may define nonnegative integers a, b, c by

$$
\begin{equation*}
2^{a}\left\|R, \quad 2^{b}\right\| 4 k-l+2 r, \quad 2^{c} \| l-2 k . \tag{13.6}
\end{equation*}
$$

We have from (13.5) and (13.6)

$$
\begin{equation*}
a+b=2 r \tag{13.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{R}{2^{a}} \frac{4 k-l+2 F}{2^{b}}=\left(\frac{l-2 k}{2^{c}}\right)^{2}, \tag{13.8}
\end{equation*}
$$

where

$$
\frac{R}{2^{a}}, \frac{4 k-l+2 F}{2^{b}}, \frac{|l-2 k|}{2^{c}}
$$

are odd positive integers. Suppose that

$$
G C D\left(\frac{R}{2^{a}}, \frac{4 k-l+2 F^{\prime}}{2^{b}}\right)>1
$$

Then there is an odd prime p which divides $R / 2^{a}$ and $(1 k-l+2 F) / 2^{b}$, and thus p divides $1 k-l-2 F, 4 k-l+2 F$, and $l-2 k$, giving successively

$$
p|8 k-2 l, \quad p| 4 k-l, \quad p|2 k, \quad p| k, \quad p \mid l
$$

contradicting $C(C D(k, l)=1$. Ilence we have

$$
\begin{equation*}
\operatorname{ricl}\left(\frac{R}{2^{4}}, \frac{4 k-1+2 F}{2^{E}}\right)=1 . \tag{13.9}
\end{equation*}
$$

Firom (13.K) and (13.9) wie see that

$$
\begin{equation*}
\frac{R}{2^{a}}=\mathrm{X}^{2} \tag{13.10}
\end{equation*}
$$

for sone integer X. Next we show that α is even. This is clear if $a=0$ so we may suppose that $a \geq 1$. Thus $2 \mid R$ and so l is even. $\Lambda s G C D(k, l)=1$ we have k odd. Then, taking $-k^{2}+3 k l-l^{2}=F^{2}$ successively modulo 2,4 and 8 , we get

$$
\begin{equation*}
F \equiv 1 \quad(\bmod 2) \tag{13.11}
\end{equation*}
$$

$$
\begin{align*}
& l \equiv 2 \quad(\bmod 4) \tag{13.12}\\
& l \equiv 2 k \quad(\bmod 8)
\end{align*}
$$

Thus we have $4 k-l \pm 2 F \equiv 0(\bmod 1)$ and so $a \geq 2, b \geq 2$. Also we have

$$
2^{\min (a, b)} \mid(4 k-l+2 F)-(4 k-l-2 F)=4 F,
$$

and so as F^{\prime} is odd we have $\min (a, b) \leq 2$. If $a \leq b$ then we have $a \leq 2$, which implies that $a=2$. If $b<a$ then $b \leq 2$, which implies that $b=2, a=2 c-2$. In both cases a is even as asserted.

Setting $a=2 d, x_{0}=2^{d} x$, we have $R=x_{0}^{2}$. Then from (13.4) we deduce that $T=y_{0}^{2}, S= \pm x_{0} \psi_{0}$. Changing the sign of x_{0} if necessary we may suppose that $S=x_{0} y_{0}$. Thus we obtain $x_{0}^{2}+y_{0}^{2}=R+T=(5 R+5 T) / 5=$ $(4 k-l-2 F+k+l+2 F) / 5=k$ and $x_{0}^{2}+2 x_{0} y_{0}+2 y_{0}^{2}=R+2 S+2 T=l$, so that $\left(x_{0}, y_{0}\right)$ is a solution of (13.0).

Now let (x, y) be any solution of (13.0). Then using (13.0) we have

$$
F^{2}=-k^{2}+3 k l-l^{2}=\left(x^{2}+x y-y^{2}\right)^{2}
$$

so that (with F rhosen to satissy (13.1))

$$
\begin{equation*}
x^{2}+x y-y^{2}= \pm \mu \tag{13.14}
\end{equation*}
$$

Solving (13.0) and (13.1.1) for x^{2}, riy. y^{2}, we get

$$
\left\{\begin{array}{l}
5 x^{2}=1 k 2 F \tag{13.15}\\
5 x y=-3 k+2 l \pm f \\
5 y^{2}=k+l \mp 2 F
\end{array}\right.
$$

As

$$
r^{\prime} \equiv 2(k+l) \not \equiv 0(\bmod 5)
$$

the lower signs must hold in (13.15), and so

$$
\left\{\begin{array}{l}
x^{2}=\left(1 k-l-2 \vdash^{\prime}\right) / 5 \tag{13.16}\\
x y=\left(-3 k+2 l-F^{\prime}\right) / 5 \\
y^{2}=(k+l+2 F) / 5
\end{array}\right.
$$

Since this is true for any solution of (13.0) we must have that (13.16) holds with x, y replaced by x_{0}, y_{0} respectively. This means that

$$
x^{2}=x_{0}^{2}, \quad x y=x_{0} y_{0}, \quad y^{2}=y_{0}^{2},
$$

giving

$$
(x, y)=\left(x_{0}, y_{0}\right), \quad \text { or } \quad\left(-x_{0},-y_{0}\right)
$$

and proving that (13.0) has exactly two integral solutions.
14. Let r and s be non-zero integers. Prove that the equation

$$
\begin{equation*}
\left(r^{2}-s^{2}\right) x^{2}-4 r s x y-\left(r^{2}-s^{2}\right) y^{2}=1 \tag{14.0}
\end{equation*}
$$

has no solutions in integers x and y.

Solution: We suppose that x and y are integers satisfying (14.0). Factoring the left side of (14.0), we obtain

$$
\begin{equation*}
((r-s) x-(r+s) y)((r+s) x+(r-s) y)=1 \tag{14.1}
\end{equation*}
$$

As each factor on the left side of (14.1) is an integer, we see that

$$
\left\{\begin{array}{l}
(r-s) x-(r+s) y=\epsilon, \tag{14.2}\\
(r+s) x+(r-s) y-\epsilon,
\end{array}\right.
$$

where $(= \pm 1$. Solving (14.2) for x and y, we ohtain

$$
\begin{equation*}
x=\frac{r \epsilon}{r^{2}+s^{2}}, \quad y=\frac{-s \epsilon}{r^{2}+s^{2}} . \tag{14.3}
\end{equation*}
$$

Hence we have $\left(x^{2}+y^{2}\right)\left(r^{2}+s^{2}\right)=1$, so that $r^{2}+s^{2}=1$, that is

$$
(r, s)=(\pm 1,0) \quad \text { or } \quad(0, \pm 1)
$$

which is impassible as r and s are both non-zero, thus showing that (14.0) has no integral solutions.
15. Evaluate the integral

$$
\begin{equation*}
I=\int_{0}^{1} \ln x \ln (1-x) d x \tag{15.0}
\end{equation*}
$$

Solution: The function $\ln x \ln (1-x)$ is continuous for $0<x<1$, but is not defined at $x=0$ and $x=1$, so that

$$
\begin{equation*}
I=\lim _{\substack{\varepsilon \rightarrow 0^{+} \\ \delta \rightarrow 0^{+}}} \int_{e}^{1-\delta} \ln x \ln (1-x) d x . \tag{15.1}
\end{equation*}
$$

For x satisfying

$$
\begin{equation*}
0<\epsilon \leq x \leq 1-\delta<1, \tag{15.2}
\end{equation*}
$$

mud n a positive integer, we have

$$
-\ln (1-x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k}=\sum_{k=1}^{n} \frac{x^{k}}{k}+x^{n+1} \sum_{k=n+1}^{\infty} \frac{x^{k-(n+1)}}{k},
$$

.nd so

$$
\begin{aligned}
\left|\ln (1-x)+\sum_{k=1}^{n} \frac{x^{k}}{k}\right| & =x^{n+1} \sum_{k=0}^{\infty} \frac{x^{k}}{n+1+k} \\
& \leq \frac{x^{n+1}}{n+1} \sum_{k=0}^{\infty} x^{k} \\
& =\frac{x^{n+1}}{(n+1)(1-x)}
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \left|\int_{e}^{1-\delta} \ln x\left(\ln (1-x)+\sum_{k=1}^{n} \frac{x^{k}}{k}\right) d x\right| \tag{15.3}\\
& \quad \leq \frac{1}{(n+1)} \int_{c}^{1-\delta}(-\ln x) \frac{x^{n+1}}{(1-x)} d x
\end{align*}
$$

Now, for $y \geq 1$, we have

$$
\begin{equation*}
0 \leq \ln y=\int_{1}^{y} \frac{d t}{t} \leq \int_{1}^{y} d t=y-1 \tag{15.4}
\end{equation*}
$$

Taking $y=1 / x$ in (15.4), we have

$$
\begin{equation*}
0 \leq-\ln x=\ln \left(\frac{1}{x}\right) \leq \frac{1}{x}-1=\frac{1-x}{x} . \tag{15.5}
\end{equation*}
$$

Using the inequality (15.5) in (15.3) we deduce

$$
\begin{aligned}
& \left|\int_{e}^{1-\delta} \ln x \ln (1-x) d x+\sum_{k=1}^{n} \frac{1}{k} \int_{e}^{1-\delta} x^{k} \ln x d x\right| \\
& \quad \leq \frac{1}{n+1} \int_{e}^{1-\delta} x^{n} d x \\
& \quad<\frac{1}{n+1} \int_{0}^{1} x^{n} d x \\
& \quad=\frac{1}{(n+1)^{2}}
\end{aligned}
$$

and letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\int_{e}^{1-6} \ln x \ln (1-x) d x=-\sum_{k-1}^{\infty} \frac{1}{k} \int_{e}^{1-k} x^{k} \ln x d x \tag{15.6}
\end{equation*}
$$

As

$$
\frac{d}{d x}\left(\frac{x^{k+1} \ln x}{k+1}-\frac{x^{k+1}}{(k+1)^{2}}\right)=x^{k} \ln x,
$$

hy the fundamental theorem of calculus, we: have

$$
\begin{aligned}
\int_{\epsilon}^{1}{ }^{\prime} x^{k} \ln x d x= & \frac{(1-\delta)^{k+1} \ln (1-\delta)}{k+1}-\frac{(1-\delta)^{k+1}}{(k+1)^{2}} \\
& -\frac{e^{k+1} \ln \epsilon}{k+1}+\frac{\epsilon^{k+1}}{(k+1)^{2}}
\end{aligned}
$$

so that by (15.6)

$$
\begin{aligned}
\int_{e}^{1-\delta} \ln x \ln (1-x) d x= & \ln \epsilon \sum_{k=1}^{\infty} \frac{c^{k+1}}{k(k+1)}-\sum_{k=1}^{\infty} \frac{e^{k+1}}{k(k+1)^{2}} \\
& -\ln (1-\delta) \sum_{k=1}^{\infty} \frac{(1-\delta)^{k+1}}{k(k+1)}+\sum_{k=1}^{\infty} \frac{(1-\delta)^{k+1}}{k(k+1)^{2}},
\end{aligned}
$$

that is
(15.7) $\int_{c}^{1-\delta} \ln x \ln (1-x) d x$

$$
=(\ln \epsilon) \Lambda(c)-B(\epsilon)-(\ln (1-\delta)) \Lambda(1-\delta)+B(1-\delta),
$$

where, for $0<y<1, A(y)$ and $B(y)$ are defined by

$$
\begin{equation*}
\Lambda(y)=\sum_{k=1}^{\infty} \frac{y^{k+1}}{k(k+1)}, \tag{15.8}
\end{equation*}
$$

$$
\begin{equation*}
B(y)=\sum_{k=1}^{\infty} \frac{y^{k+1}}{k(k+1)^{2}} \tag{15.9}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}}(\ln \epsilon) \Lambda(\epsilon)=0 \tag{15.10}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}}(\ln (1-\delta)) \wedge(1-\delta)=0 \tag{15.11}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{1 \rightarrow(0)^{+}} B(c)=0, \tag{15.12}
\end{equation*}
$$

(15.13)

$$
\lim _{\delta \rightarrow 0^{+}} B(1-\delta)=2-\frac{\pi^{2}}{6}
$$

so that (15.1) and (15.7) give

$$
\begin{equation*}
I=2-\frac{\pi^{2}}{6} \tag{15.14}
\end{equation*}
$$

as asserted in the IIINTS.
Before proving (15.10)-(15.13) we show that

$$
\begin{equation*}
\lim _{c \rightarrow 0^{+}}(\ln c) \ln (1-c)=0 \tag{15.15}
\end{equation*}
$$

For $0<\epsilon<1$ we have

$$
-\ln (1-\epsilon)=\epsilon+\frac{\epsilon^{2}}{2}+\frac{\epsilon^{3}}{3}+\cdots\left\{\begin{array}{l}
>\epsilon, \\
<\epsilon+\epsilon^{2}+\epsilon^{3}+\cdots=\frac{\epsilon}{1-\epsilon},
\end{array}\right.
$$

so that

$$
-\epsilon \ln \epsilon<(\ln \epsilon) \ln (1-\epsilon)<-\frac{c \ln \epsilon}{1-\epsilon},
$$

from which (15.15) follows, as

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \epsilon \ln \epsilon=0 . \tag{15.16}
\end{equation*}
$$

Now for $0<\epsilon<1$ we have

$$
\begin{aligned}
A(\epsilon) & =\epsilon \sum_{k=1}^{\infty} \frac{\epsilon^{k}}{k}-\sum_{k=1}^{\infty} \frac{\epsilon^{k+1}}{k+1} \\
& =-c \ln (1-c)+\ln (1-\epsilon)+c \\
& =(1-\epsilon) \ln (1-c)+c,
\end{aligned}
$$

so that

$$
\lim _{c(1)^{+}}(\ln c) A(c)=0 .
$$

This prowes (15.10).
Next we have, by Abel's theorem,

$$
\lim _{\delta \rightarrow 0^{+}} A(1-\delta)=\lim _{\delta \rightarrow 0^{+}} \sum_{k=1}^{\infty} \frac{(1-\delta)^{k+1}}{k(k+1)}=\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=1
$$

so that

$$
\lim _{\delta \rightarrow 0^{+}}(\ln (1-\delta)) \wedge(1-\delta)=\ln 1=0
$$

'This proves (15.11). Also we have

$$
|B(\epsilon)| \leq \epsilon \sum_{k=1}^{\infty} \frac{1}{k(k+1)^{2}}
$$

so that

$$
\lim _{c \rightarrow 0^{+}} B(c)=0
$$

proving (15.12). Finally, by Abel's theorem, we have

$$
\begin{aligned}
\lim _{\delta \rightarrow 0^{+}} B(1-\delta) & =\lim _{\delta \rightarrow 0^{+}} \sum_{k=1}^{\infty} \frac{(1-\delta)^{k+1}}{k(k+1)^{2}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k(k+1)^{2}} \\
& =\sum_{k=1}^{\infty}\left(\frac{1}{k(k+1)}-\frac{1}{(k+1)^{2}}\right) \\
& =1-\left(\frac{\pi^{2}}{6}-1\right) \\
& =2-\frac{\pi^{2}}{6},
\end{aligned}
$$

poving (15.13), and completing the proof of (15.14).
16. Solve the recurrence relation

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} a(k)=\frac{n}{n+1}, \quad n=1,2, \ldots . \tag{16.0}
\end{equation*}
$$

Solution: We make lbe inductive hypothesi:s that a(n) (-1)"11/(11) I) for all positive integers n satisfying $1 \leq u \leq m$. This hypothesis is true for $m=1$ as $a(1)=1 / 2$. Now, by (16.0) and the inductive hypothesis, we have

$$
a(m+1)=\frac{m+1}{m+2}-\sum_{k=1}^{m}\binom{m+1}{k} \frac{(-1)^{k+1}}{k+1} .
$$

Thus we must show that

$$
\sum_{k=1}^{m}\binom{m+1}{k} \frac{(-1)^{k+1}}{k+1}=\frac{m+1-(-1)^{m}}{m+2}
$$

or equivalently

$$
\sum_{k=1}^{m+1}\binom{m+1}{k} \frac{(-1)^{k+1}}{k+1}=\frac{m+1}{m+2}
$$

By the binomial theorem, we have for any real number x

$$
\begin{equation*}
(1+x)^{m+1}=\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} \tag{16.1}
\end{equation*}
$$

Integrating (16.1) with respect to x, we obtain

$$
\begin{equation*}
\frac{(1+x)^{m+2}}{m+2}=\sum_{k=0}^{m+1}\binom{m+1}{k} \frac{x^{k+1}}{k+1}+\frac{1}{m+2} . \tag{16.2}
\end{equation*}
$$

Taking $x=-1$ in (16.2) we have

$$
\sum_{k=0}^{m+1}\binom{m+1}{k} \frac{(-1)^{k+1}}{k+1}=-\frac{1}{m+2}
$$

and so

$$
\sum_{k=1}^{m+1}\binom{m+1}{k} \frac{(-1)^{k+1}}{k+1}=1-\frac{1}{m+2}=\frac{m+1}{m+2}
$$

as required. The result now follows by the principle of mathematical induction.
17. Let n and k be positive integers. l.et \boldsymbol{p} be a prime such that

$$
p>\left(n^{2}+n+k j^{2}+k\right.
$$

Prove that the sequence

$$
\begin{equation*}
n^{2}, n^{2}+1, n^{2}+2, \ldots, n^{2}+l \tag{17.0}
\end{equation*}
$$

where $l=\left(n^{2}+n+k\right)^{2}-n^{2}+k$, contains a pair of integers $(m, m+k)$ such that

$$
\left(\frac{\pi n}{p}\right)=\left(\frac{m+k}{p}\right)=1
$$

Solution: As n and k are positive integers and $p>\left(n^{2}+n+k\right)^{2}+k$, none of the integers of the sequence (17.0) is divisible by p. If $\left(\frac{n^{2}+k}{p}\right)=1$ we can take $(m, 7 n+k)=\left(n^{2}, n^{2}+k\right)$. If $\left(\frac{(n+1)^{2}+k}{p}\right)=1$ we can take $(m, m+k)=\left((n+1)^{2},(n+1)^{2}+k\right)$. Finally, if

$$
\left(\frac{n^{2}+k}{p}\right)=\left(\frac{(n+1)^{2}+k}{p}\right)=-1
$$

we can take $(m, m+k)=\left(\left(n^{2}+n+k\right)^{2},\left(n^{2}+n+k\right)^{2}+k\right)$, as

$$
\begin{aligned}
\left(\frac{\left(n^{2}+n+k\right)^{2}+k}{p}\right) & =\left(\frac{\left(n^{2}+k\right)\left((n+1)^{2}+k\right)}{p}\right) \\
& =\left(\frac{n^{2}+k}{p}\right)\left(\frac{(n+1)^{2}+k}{p}\right) \\
& =(-1)(-1)=1
\end{aligned}
$$

This establishes the existence of a pair of integers as required.
18. Let

$$
a_{n}-\frac{1}{4 n+1}+\frac{1}{4 n+3}-\frac{1}{2 n+2}, \quad n=0,1, \ldots
$$

Does the infinite series $\sum_{n=0}^{\infty} a_{n}$ converge, and if so, what is its sum?

Solution: Let $s(N)=\sum_{n=0}^{N} a_{n}, \quad N^{\prime}=0,1, \ldots \quad$ We have

$$
\begin{aligned}
s(N) & =\sum_{n=0}^{N}\left(\frac{1}{4 n+1}+\frac{1}{4 n+3}-\frac{1}{2 n+2}\right) \\
& =\sum_{n=0}^{N}\left(\frac{1}{4 n+1}-\frac{1}{4 n+2}+\frac{1}{4 n+3}-\frac{1}{4 n+4}+\frac{1}{4 n+2}-\frac{1}{4 n+4}\right) \\
& =\sum_{m=1}^{4 N+4} \frac{(-1)^{m-1}}{m}+\frac{1}{2} \sum_{m=1}^{2 N+2} \frac{(-1)^{m-1}}{m} .
\end{aligned}
$$

Letting $N \rightarrow \infty$ we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} s(N) & =\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{m-1}}{m} \\
& =\frac{3}{2} \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} \\
& =\frac{3}{2} \ln 2
\end{aligned}
$$

so that $\sum_{n=0}^{\infty} a_{n}$ converges with sum $\frac{3}{2} \ln 2$.
19. Let a_{1}, \ldots, a_{m} be $m(\geq 2)$ real numbers. Set

$$
A_{n}=a_{1}+a_{2}+\ldots+a_{n}, \quad n=1,2, \ldots, m
$$

Prove that
(19.0)

$$
\sum_{n=2}^{m}\left(\frac{A_{n}}{n}\right)^{2} \leq 12 \sum_{n=1}^{m} a_{n}^{2}
$$

Solution: For $n=1,2, \ldots, m$ we have

$$
\begin{aligned}
\left(\frac{A_{n}}{n}\right)^{2} & =\left(a_{n}+\frac{A_{n}}{n}-a_{n}\right)^{2} \\
& \leq 2 a_{n}^{2}+2\left(\frac{A_{n}}{n}-a_{n}\right)^{2} \\
& =4 a_{n}^{2}+2\left(\frac{A_{n}}{n}\right)^{2}-4 a_{n} \frac{A_{n}}{n},
\end{aligned}
$$

and so

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{A_{n}}{n}\right)^{2} \leq 4 \sum_{n=1}^{m} a_{n}^{2}+2 \sum_{n=1}^{m}\left(\frac{A_{n}}{n}\right)^{2}-4 \sum_{n=1}^{m} a_{n} \frac{A_{n}}{n} . \tag{19.1}
\end{equation*}
$$

But as

$$
-2 a_{n} A_{n}=-\left(A_{n}^{2}-A_{n-1}^{2}\right)-a_{n}^{2} \leq-\left(A_{n}^{2}-A_{n-1}^{2}\right)
$$

we have

$$
\begin{aligned}
-2 \sum_{n=1}^{m} a_{n} \frac{A_{n}}{n} & \leq-\sum_{n=1}^{m} \frac{\left(A_{n}^{2}-A_{n-1}^{2}\right)}{n} \\
& =-\sum_{n=1}^{m-1} \frac{A_{n}^{2}}{n(n+1)}-\frac{A_{m}^{2}}{m}
\end{aligned}
$$

that is

$$
\begin{equation*}
-2 \sum_{n=1}^{m} a_{n} \frac{A_{n}}{n} \leq-\sum_{n=1}^{m} \frac{A_{n}^{2}}{n(n+1)} \tag{19.2}
\end{equation*}
$$

Using (19.2) in (19.1) we obtain

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{A_{n}}{n}\right)^{2} & \leq 4 \sum_{n=1}^{m} a_{n}^{2}+2 \sum_{n=1}^{m}\left(\frac{A_{n}}{n}\right)^{2}-2 \sum_{n=1}^{m} \frac{A_{n}^{2}}{n(n+1)} \\
& =4 \sum_{n=1}^{m} a_{n}^{2}+2 \sum_{n=1}^{m} \frac{A_{n}^{2}}{n^{2}(n+1)},
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{n=1}^{m}\left(1-\frac{2}{n+1}\right)\left(\frac{\Lambda_{n}}{n}\right)^{2} \leq 4 \sum_{n=1}^{m} a_{n}^{2} \tag{19.3}
\end{equation*}
$$

The inequality (19.0) now follows from (19.3) by noting that $1-\frac{2}{n+1}=0$ when $n=1$, and $1-\frac{2}{n+1} \geq \frac{1}{3}$ for $n \geq 2$.
20. Evaluate the sum

$$
S=\sum_{k=0}^{n} \frac{\binom{n}{k}}{\binom{2 n-1}{k}}
$$

for all positive integers n.

Solution: We have

$$
\begin{aligned}
\frac{\binom{n}{k}}{\binom{2 n}{k}}-\frac{\binom{n}{k+1}}{\binom{2 n}{k+1}} & =\frac{n!(2 n-k)!}{(n-k)!2 n!}-\frac{n!(2 n-k-1)!}{(n-k-1)!2 n!} \\
& =\frac{n!(2 n-1-k)!}{(n-k)!(2 n-1)!}\left(\frac{(2 n-k)}{2 n}-\frac{(n-k)}{2 n}\right) \\
& =\frac{1}{2} \frac{\binom{n}{k}}{\binom{2 n-1}{k}},
\end{aligned}
$$

so that

$$
S=2 \sum_{k=0}^{n}\left(\frac{\binom{n}{k}}{\binom{2 n}{k}}-\frac{\binom{n}{k+1}}{\binom{2 n}{k+1}}\right)
$$

$$
\begin{aligned}
& =2\left(\frac{\binom{n}{0}}{\left(\begin{array}{c}
\binom{n}{0}
\end{array}-\frac{\binom{n}{n+1}}{\binom{2 n}{n+1}}\right)}\right. \\
& =2 .
\end{aligned}
$$

21. I.et a and b be coprime positive integers. For k a positive integer, let $\mathcal{N}(k)$ denote the number of integral solntions to the equation

$$
\begin{equation*}
u x+b y=k, \quad x \ddot{\square} 0, \quad y \doteq 0 . \tag{21.0}
\end{equation*}
$$

F.valuate the limit

$$
L=\lim _{k \rightarrow+\infty} \frac{N(k)}{k}
$$

Solution: As a and b are coprime there are integers g and h such that

$$
\begin{equation*}
a g+b h-k \tag{21.1}
\end{equation*}
$$

Then all solutions of $a x+b y=k$ are given by

$$
\begin{equation*}
x=g+b l, \quad y=h-a t, \quad t=0, \pm 1, \pm 2, \ldots . \tag{21.2}
\end{equation*}
$$

Thus the solutions of (21.0) are given by (21.2) for those integral values of t satisfying

$$
\begin{equation*}
\frac{h}{a} \geq t \geq-\frac{g}{b} \tag{21.3}
\end{equation*}
$$

Set

$$
\lambda(b, g)= \begin{cases}0, & \text { if } b \text { divides } g \tag{21.4}\\ 1, & \text { if } b \text { does not divide } g,\end{cases}
$$

Then there are

$$
\left[\frac{h}{a}\right]-\left[\frac{-g}{b}\right]-\lambda(b, g)+1
$$

values of t satisfying (21.3). Hence we have

$$
\begin{equation*}
N(k)=\left[\frac{h}{a}\right]-\left[\frac{-g}{b}\right]-\lambda(b, g)+1, \tag{21.5}
\end{equation*}
$$

and so

$$
\left|N(k)-\frac{h}{a}-\frac{g}{b}\right| \leq 1+1+1+1=4,
$$

giving, by (21.1),

$$
\left|\begin{array}{cc}
N(k) \tag{21.6}\\
k & -\quad-b
\end{array}\right| \leq \frac{4}{k} .
$$

Letting $k \rightarrow+\infty$ in (21.6), we obtain $L=1 / a b$.
22. Let a, d and r be positive integers. For $k=0,1, \ldots$ set

$$
\begin{equation*}
u_{k}=u_{k}(a, d, r)=\frac{1}{(a+k d)(a+(k+1) d) \ldots(a+(k+r) d)} . \tag{22.0}
\end{equation*}
$$

Evaluate the sum

$$
S=\sum_{k=0}^{n} u_{k},
$$

where \boldsymbol{n} is a positive integer.

Solution: For $k=-1,0,1, \ldots$ we set

$$
\begin{equation*}
v_{k}=v_{k}(a, d, r)=\frac{1}{(a+(k+1) d) \cdots(a+(k+r) d) r d}, \tag{22.1}
\end{equation*}
$$

so that

$$
\begin{aligned}
v_{k} & -v_{k+1} \\
& =\frac{1}{(a+(k+2) d) \cdots(a+(k+r) d) r d}\left(\frac{1}{(a+(k+1) d)}\right. \\
& =\frac{\left.-\frac{1}{(a+(k+r+1) d)}\right)}{(a+(k+1) d)(a+(k+2) d) \cdots(a+(k+r) d)(a+(k+r+1) d)},
\end{aligned}
$$

that is $v_{k}-v_{k+1}=u_{k+1}$. Hence we have

$$
S=\sum_{k=0}^{n} u_{k}=\sum_{k=1}^{n-1} u_{k+1}=\sum_{k=-1}^{n-1}\left(v_{k}-v_{k+1}\right)=v_{-1}-v_{n},
$$

that is

$$
S \quad \frac{1}{r d}\left(\frac{1}{a(a+d) \cdots(a+(r-1) d)}-\frac{1}{(a+(n+1) d) \cdots(a+(n+\bar{r}) d)}\right) .
$$

23. Let x_{1}, \ldots, x_{1} be $n(>1)$ real numbers. Set

$$
x_{i j}=x_{i}-x_{j} \quad(1 \leq i<j \leq n) .
$$

Iet F be a real-valued function of the $n(n-1) / 2$ variables $x_{i j}$ such that the inequality

$$
\begin{equation*}
F\left(x_{11}, x_{12}, \ldots, x_{n-1 n}\right) \leq \sum_{k=1}^{n} x_{k}^{2} \tag{23.0}
\end{equation*}
$$

holds for all x_{1}, \ldots, x_{n}.
Prove that equality cannot hold in (23.0) if $\sum_{k=1}^{n} x_{k} \neq 0$.

Solution: Set $M=\left(x_{1}+\cdots+x_{n}\right) / n$, and replace each x_{i} by $x_{i}-M$ in (23.0). Then (23.0) gives the stronger inequality

$$
F\left(x_{11}, x_{12}, \ldots, x_{n-1}\right) \leq \sum_{k=1}^{n}\left(x_{k}-M\right)^{2}=\sum_{k=1}^{n} x_{k}^{2}-\frac{1}{n}\left(\sum_{k=1}^{n} x_{k}\right)^{2}
$$

Hence if x_{1}, \ldots, x_{n} are chosen so that $\sum_{k=1}^{n} x_{k} \neq 0$, equality cannot hold in (23.0).
24. Let a_{1}, \ldots, a_{m} be $m(\geq 1)$ real numbers which are such that $\sum_{n=1}^{m} a_{n} \neq 0$. Prove the inequality

$$
\begin{equation*}
\left(\sum_{n=1}^{m} n a_{n}^{2}\right) /\left(\sum_{n=1}^{m} a_{n}\right)^{2}>\frac{1}{2 \sqrt{ } m} \tag{24.0}
\end{equation*}
$$

Solution: By the C'auchy Schwarz inequality we have

$$
\begin{equation*}
\left(\sum_{n=1}^{m} a_{n}\right)^{2}-\left(\sum_{n=1}^{m} a_{n} \sqrt{n} \frac{1}{\sqrt{n}}\right)^{2} \leq \sum_{n=1}^{m} n a_{n}^{2} \sum_{n=-1}^{m} \frac{1}{n} . \tag{24.1}
\end{equation*}
$$

Sext, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n} & \leq 1+\int_{1}^{m} \frac{d x}{x} \leq 1+\int_{1}^{m} \frac{d x}{\sqrt{x}} \\
& =1+(2 \sqrt{m}-2)=2 \sqrt{ } m-1<2 \sqrt{ } m .
\end{aligned}
$$

We obtain (24.0) by using the latter inequality in (24.1).
25. Prove that there exist infinitdy many positive integers which are not expressible in the form $n^{2}+p$, where n is a positive integer and p is a prime.

Solution: We show that the integers $(3 m+2)^{2}, m=1,2, \ldots$, cannot be expressed in the form $n^{2}+p$, where $n \geq 1$ and p is a prime. For suppose that

$$
(3 m+2)^{2}=n^{2}+p,
$$

where $n \geq 1$ and p is a prime, then

$$
\begin{equation*}
p=(3 m+2-n)(3 m+2+n) . \tag{25.1}
\end{equation*}
$$

Since p is a prime and $0<3 m+2-n<3 m+2+n$, we must have

$$
\begin{equation*}
3 m+2-n=1, \quad 3 m+2+n=p . \tag{25.2}
\end{equation*}
$$

Solving (25.2) for m and n we get

$$
m=(p-3) / 6, \quad n=(p-1) / 2,
$$

so that $p=3(2 m+1)$. As p is prime, we must have $m=0$, which contradicts $m \geq 1$.
26. Evaluate the infinite scries

$$
S=\sum_{n=1}^{\infty} \arctan \left(\frac{2}{r^{2}}\right) .
$$

Solution: For $n \geq 1$ we have

$$
\begin{aligned}
\arctan \left(\frac{1}{n}\right)-\arctan \left(\frac{1}{n+2}\right) & =\arctan \left(\frac{\frac{1}{n} \cdots \frac{1}{n+2}}{1+\frac{1}{n(n+2)}}\right) \\
& =\arctan \left(\frac{2}{(n+1)^{2}}\right)
\end{aligned}
$$

so that for $N \geq 2$ we have

$$
\begin{aligned}
& \sum_{n=2}^{N} \arctan \left(\frac{2}{n^{2}}\right)=\sum_{n=1}^{N-1} \arctan \left(\frac{2}{(n+1)^{2}}\right) \\
&=\sum_{n=1}^{N-1}\left(\arctan \left(\frac{1}{n}\right)-\arctan \left(\frac{1}{n+2}\right)\right) \\
&=\arctan (1)+\arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{1}{N}\right) \\
&-\arctan \left(\frac{1}{N+1}\right) .
\end{aligned}
$$

Letting $N \rightarrow \infty$ we get

$$
\sum_{n=2}^{\infty} \arctan \left(\frac{2}{n^{2}}\right)=\arctan (1)+\arctan \left(\frac{1}{2}\right)=\frac{\pi}{4}+\arctan \left(\frac{1}{2}\right)
$$

and so

$$
S=\frac{\pi}{4}+\arctan (2)+\arctan \left(\frac{1}{2}\right)=\frac{3 \pi}{4} .
$$

27. Leet p_{1}, \ldots, p_{n} denote $n(\geq 1)$ distinct. inteners and let $f_{n}(x)$ be the polynomial of degree n given by

$$
f_{n}(x)=\left(x-p_{1}\right)\left(x-p_{2}\right) \ldots\left(x-p_{n}\right) .
$$

Prove that the polynomial

$$
g_{n}(x)=\left(J_{n}(x)\right)^{2}+1
$$

cannot be expressed as the product of two non constant polynomials with integral coeflicients.

Solution: Suppose that $g_{n}(x)$ can be expressed as the product of two nonconstant polynomials with integral coeflicients, say

$$
\begin{equation*}
g_{n}(x)=h(x) k(x) . \tag{27.1}
\end{equation*}
$$

Neither $h(x)$ nor $k(x)$ has a real root as $g_{n}(x)>0$ for all real x. Thus, neither $h(x)$ nor $k(x)$ can change sign as x takes on all real values, and we. may suppose that

$$
\begin{equation*}
h(x)>0, \quad k(x)>0, \quad \text { for all real } x . \tag{27.2}
\end{equation*}
$$

Since $g_{n}\left(p_{i}\right)=1, i=1,2, \ldots, n$, we have $h\left(p_{i}\right)=k\left(p_{i}\right)=1, i=1,2, \ldots, n$. If the degree of cither $h(x)$ or $k(x)$ were less than n, then the polynomial would have to be identically 1 , which is not the case as $h(x)$ and $k(x)$ are non-constant polynomials. Hence beth $h(x)$ and $k(x)$ have degree n, and

$$
\left\{\begin{array}{l}
h(x)=1+a\left(x-p_{1}\right) \cdots\left(x-p_{n}\right), \tag{27.3}\\
k(x)=1+b\left(x-p_{1}\right) \cdots\left(x-p_{n}\right),
\end{array}\right.
$$

for integers a and b. Thus we have

$$
\begin{align*}
& \left(x-p_{1}\right)^{3}\left(x-p_{2}\right)^{2} \cdots\left(x-p_{n}\right)^{2}+1 \tag{27.4}\\
& =1+(a+b)\left(x-p_{1}\right) \cdots\left(x-p_{n}\right)+a b\left(x-p_{1}\right)^{2} \cdots\left(x \quad p_{n}\right)^{2} .
\end{align*}
$$

Equating coefficients of $x^{2 n}$ and x^{n} in (27.4) we obtain

$$
\begin{cases}a b & =1 \tag{27.5}\\ a+b & =0\end{cases}
$$

Thus we have a contradiction as no integers satisfy (27.5).
28. Two people, A and B, play a game in which the probability that A wins is p, the probability that B wins is q, and the probability of a draw is r. At the beginning, A has m dollars and B has n dollars. At the end of each game the winner takes a dollar from the loser. If A and B agree to play until one of them loses all his/her money, what is the probabilty of A winning all the money?

Solution: Let $p(k), k=0,1, \ldots$, denote the probability that A wins when he/she has k dollars. Clearly, we have

$$
\begin{equation*}
p(0)=0, \quad p(m+\pi)=1 \tag{28.1}
\end{equation*}
$$

We want to determine $p(m)$. Consider A 's chances of winning when he/she has $k+1$ dollars. If A wins the next game, A 's probability of ultinately winning is $a p(k+2)$. If A loses the next game however, A 's probability of ultimately winning is $b p(k)$, while if the game is drawn, A 's probability of ultimately winning is $c p(k+1)$. Hence we have

$$
p(k+1)=a p(k+2)+b p(k)+c p(k+1) .
$$

As $a+b+c=1$ we deduce that

$$
a p(k+2)-(a+b) p(k+1)+b p(k)=0 .
$$

Soving this difference equation, we obtain

$$
p(k)= \begin{cases}A+B k & , \text { if } a=b \\ A+B(b / a)^{k} & , \text { if } a \neq b\end{cases}
$$

where A and B are constants to be determined. Using (28.1) we obtain

$$
\begin{cases}A=0, \quad B=1 /(m+n) & , \text { if } a=b \\ A=-B=1 /\left(1-(b / a)^{m+n}\right) & , \text { if } a \neq b\end{cases}
$$

so that

$$
p(m)= \begin{cases}m /(m+n) & , \text { if } a=b, \\ \left(1-(b / a)^{\prime n}\right) /\left(1-(b / a)^{m+n}\right) & , \text { if } a \neq b\end{cases}
$$

29. Let $f(x)$ be a monic polynomial of degree $n \geq 1$ with complex coefficients. Let x_{1}, \ldots, x_{n} denote the n complex roots of $f(x)$. The discriminant $D(f)$ of the polynomial $f(x)$ is the complex number

$$
\begin{equation*}
D(f)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2} \tag{29.0}
\end{equation*}
$$

Express the discriminant of $f\left(x^{2}\right)$ in terms of $D(f)$.

Solution: $\Lambda s x_{1}, \ldots, x_{n}$ are the n roots of $f(x)$, the $2 n$ roots of $f\left(x^{2}\right)$ are

$$
y_{1}=\sqrt{x_{1}}, y_{2}=\sqrt{x_{2}}, \ldots, y_{n}=\sqrt{x_{n}}, y_{n+1}=-\sqrt{x_{1}}, \ldots, y_{2 n}=-\sqrt{x_{n}}
$$

Hence, the discriminant of $f\left(x^{2}\right)$ is

$$
\begin{aligned}
\prod_{1 \leq i<j \leq 2 n}\left(y_{i}-y_{j}\right)^{2} & =\prod_{1 \leq i<j \leq n}\left(y_{i}-y_{j}\right)^{2} \prod_{1 \leq i \leq n<j \leq 2 n}\left(y_{i}-y_{j}\right)^{2} \\
& =\prod_{1 \leq i<j \leq n}\left(\sqrt{x_{i}}-\sqrt{x_{j}}\right)^{2} \prod_{n<i<j \leq 2 n}\left(y_{i}-y_{j}\right)^{2} \\
& \prod_{n<i<j \leq 2 n}\left(-\sqrt{x_{i-n}}+\sqrt{x_{j-n}}\right)^{2} \\
& =\prod_{1 \leq i<j \leq n}\left(\sqrt{x_{i}}-\sqrt{x_{j}}\right)^{2} \prod_{\substack{1 \leq i \leq n \\
i \leq j \leq n}}\left(\sqrt{x_{i}}+\sqrt{x_{j}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \prod_{1 \leq i<j \leq n}\left(-\sqrt{x_{i}}+\sqrt{x_{j}}\right)^{2} \\
& =\prod_{1 \leq i<j \leq n}\left(\sqrt{x_{i}}-\sqrt{x_{j}}\right)^{4} \prod_{1 \leq i<j \leq n}\left(\sqrt{x_{i}}+\sqrt{x_{j}}\right)^{4} \\
& \prod_{1 \leq i \leq n}\left(2 \sqrt{x_{1}}\right)^{4} \\
& =\prod_{1 \leq i<j \leq n}\left(x_{1} \quad x_{3}\right)^{4} 2^{2 n} \prod_{i=1}^{n} x_{i} \\
& \left.=2^{2 n}(-1)^{n} f(0)(1)(\rho)\right)^{2} .
\end{aligned}
$$

30. Prove that for cach positive integer n there exists a circle in the $x y$-plane which contains exactly n lattice points.

Solution: Let P be the point $(\sqrt{2}, 1 / 3)$. First, we show that two different lattice points $R=\left(x_{1}, y_{1}\right)$ and $S=\left(x_{2}, y_{2}\right)$ unist be at different distances from P. For if R and S were at equal distances from P, then we would lave

$$
\left(x_{1}-\sqrt{2}\right)^{2}+\left(y_{1}-\frac{1}{3}\right)^{2}=\left(: x_{2}-\sqrt{2}\right)^{2}+\left(y_{2}-\frac{1}{3}\right)^{2},
$$

so that

$$
\begin{equation*}
2\left(x_{2}-x_{1}\right) \sqrt{2}=x_{2}^{2}+y_{2}^{2}-x_{1}^{2}-y_{1}^{2}+\frac{2}{3}\left(y_{1}-y_{2}\right) . \tag{30.1}
\end{equation*}
$$

As $\sqrt{2}$ is irrational, fronn (30.1) we see that $x_{1}-x_{2}=0$, and hence $y_{2}^{2}-y_{1}^{2}+$ $\frac{2}{3}\left(y_{1}-y_{2}\right)=0$, that is

$$
\left(y_{2}-y_{1}\right)\left(y_{2}+y_{1}-2 / 3\right)=0 .
$$

Since y_{1} and y_{2} are integers, we have $y_{2}+y_{1}-2 / 3 \neq 0$, and so $y_{1}=y_{2}$, contrary to the fact that $l l$ and S are assumed distinct.

Now let n be an arbitrary natural number. Let C ' be a circle with centre P and radins large enough so that C contains more than n lattice points. Clearly C ' contains a finite number $m(>n)$ of lattice points. As the distances from P to the lat tice points are all different, we may arrange the lattice points inside C^{\prime} in a sequence $P_{1}, I_{2}^{\prime}, \ldots, I_{m}$, according to their increasing distances from P. Clearly, the circle C_{n} with centre P, passing through P_{n+1}, contains pxactly n lat tice points.
31. \quad.al n be a given non negative integer. Dovermitu the number $S(n)$ of solutions of the equation

$$
\begin{equation*}
x+2 y+2 z=n \tag{31.0}
\end{equation*}
$$

in non-negative integers x, y, z.

Solution: We have for $|t|<1$

$$
\begin{aligned}
\sum_{n=0}^{\infty} S(n) t^{n}= & \left(1+t+t^{2}+\cdots\right)\left(1+t^{2}+t^{4}+\cdots\right)^{2} \\
= & \frac{1}{(1-t)\left(1-t^{2}\right)^{2}} \\
= & \frac{1}{(1-t)^{3}(1+t)^{2}} \\
= & \frac{3 / 16}{1-t}+\frac{1 / 4}{(1-t)^{2}}+\frac{1 / 4}{(1-t)^{3}}+\frac{3 / 16}{1+t}+\frac{1 / 8}{(1+t)^{2}} \\
= & \frac{3}{16} \sum_{n=0}^{\infty} t^{n}+\frac{1}{4} \sum_{n=0}^{\infty}(n+1) t^{n} \\
& \quad+\frac{1}{4} \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} t^{n}+\frac{3}{16} \sum_{n=0}^{\infty}(-1)^{n} t^{n} \\
& \quad+\frac{1}{8} \sum_{n=0}^{\infty}(-1)^{n}(n+1) t^{n} \\
= & \frac{1}{16} \sum_{n=0}^{\infty}\left(3+4(n+1)+2(n+1)(n+2)+3(-1)^{n}\right.
\end{aligned}
$$

$$
\left.+2(-1)^{n}(n+1)\right) t^{n}
$$

giving

$$
S(n)= \begin{cases}\frac{n(n+6)}{8}+1 & , \text { if } n \text { is eveli } \\ \frac{(n+1)(n+3)}{8} & , \text { if } n \text { is odd }\end{cases}
$$

32. Let n be a fixed integer ≥ 2. Determine all functions $f(x)$, which are bounded for $0<x<a$, and which satisfy the functional equation

$$
\begin{equation*}
f(x)=\frac{1}{n^{2}}\left(f\left(\frac{x}{n}\right)+f\left(\frac{x+a}{n}\right)+\ldots+f\left(\frac{x+(n-1) a}{n}\right)\right) . \tag{32.0}
\end{equation*}
$$

Solution: Let $f(x)$ be a bounded function which satisfies (32.0) for $0<x<$ a. As $f(x)$ is bounded on $(0, a)$ there exists a positive constant If such that

$$
\begin{equation*}
|f(x)|<K, \quad 0<x<a . \tag{32.1}
\end{equation*}
$$

For $s=0,1, \ldots, n-1$ we have

$$
0<\frac{x+s a}{n}<a, \quad \text { if } 0<x<a
$$

so that by (32.1) we obtain

$$
\left|f\left(\frac{x+s a}{n}\right)\right|<K, \quad 0 \leq s \leq n-1, \quad 0<x<a .
$$

Then, for $0<x<a$, we have from (32.0),

$$
|f(x)|<\frac{1}{n^{2}}(K+K+\cdots+K)
$$

that is $|f(x)|<K / n$. Repeating the argument with the bound K replacen by K / n, we obtain

$$
|f(x)|<\pi / n^{2}, \quad 0<x<\alpha .
$$

Continuing in this way we get

$$
\begin{equation*}
|f(x)|<K / n^{\prime}, \quad 0<x<a, \tag{32.2}
\end{equation*}
$$

for $l=0,1, \ldots$, ated letting $l \cdot \infty$ in (32.2) pives $f(x)=0$ for $0<r<\pi$.
33. Let 1 denote the closed interval $[a, b], a<l$. Two lunctions $f(x), g(x)$ are said to be complctely different on I if $f(x) \neq g(x)$ for all x in I. Let $q(x)$ and $r(x)$ be functions defined on I such that the differential cquation

$$
\frac{d y}{d x}=y^{2}+q(x) y+r(x)
$$

has thres solutions $y_{1}(x), y_{2}(x), y_{3}(x)$ which are pairwise completely different on I. If $z(x)$ is a fourth solution such that the pairs of functions $z(x), y_{\mathrm{t}}(x)$ are completely different for $i=1,2,3$, prove that there exists a constant $K(\neq 0,1)$ such that

$$
\begin{equation*}
z=\frac{y_{1}\left(K y_{2}-y_{3}\right)+(1-K) y_{2} y_{3}}{(K-1) y_{1}+\left(y_{2}-K y_{3}\right)} . \tag{33.0}
\end{equation*}
$$

Solution: As $y_{1}, y_{2}, y_{3}, z=y_{4}$ are pairwise completely different on I, the function

$$
\begin{equation*}
f(x)=\frac{\left(y_{1}-y_{2}\right)\left(y_{3}-y_{4}\right)}{\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)} \tag{33.1}
\end{equation*}
$$

is well-defined on I. Also, as $y_{1}, y_{2}, y_{3}, y_{4}$ are differentiable functions on I, $f(x)$ is differentiable there and its derivative is given by

$$
f^{\prime}(x)=\frac{g(x)}{\left(y_{1}-y_{3}\right)^{2}\left(y_{2}-y_{4}\right)^{2}},
$$

where

$$
\begin{aligned}
y(x) & =\left(y_{1}^{\prime}-y_{2}^{\prime}\right)\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)\left(y_{3}-y_{1}\right) \\
& -\left(y_{1}-y_{2}\right)\left(y_{1}^{\prime}-y_{3}^{\prime}\right)\left(y_{2}-y_{1}\right)\left(y_{3}-y_{1}\right) \\
& -\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{2}^{\prime}-y_{3}^{\prime}\right)\left(y_{3}-y_{1}\right) \\
& +\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)\left(y_{3}^{\prime}-y_{1}^{\prime}\right)
\end{aligned}
$$

As

$$
y_{s}^{\prime}=y_{3}^{2} \mid 4 y_{n} \div r, \quad \text { : } \quad \because .3 .1 .
$$

we have

$$
\begin{gathered}
g(x)=\left(\left(y_{1}+y_{2}+q\right)-\left(y_{1}+y_{3}+4\right) \cdots\left(y_{2}+y_{4}+q\right)+\left(y_{3}+y_{4}+q\right)\right) \\
\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)\left(y_{3}-y_{4}\right)
\end{gathered}
$$

that is $g(x)=0$, and so $f^{\prime}(x):=0$, showing that $f(x)=K$ on \int for some constiant K. Finally, (33.0) is obtained by solving (33.1) for $z=y_{1} . K \neq 0,1$ as $z \neq y_{3}, y_{1}$ respectively.
34. Jet. $a_{n}, n=2,3, \ldots$, denote the mumber of ways the product $b_{1} b_{2} \ldots b_{n}$ can be bracketed so that only two of the b_{i} are nulliplied together at any one tixne. For example, $a_{2}=1$ since $b_{1} b_{2}$ can only be bracketed as ($b_{1} b_{2}$), whereas $a_{3}=2$ as $b_{1} b_{2} b_{3}$ can be bracketed in two ways, namely, $\left(b_{1}\left(b_{2} b_{3}\right)\right)$ and $\left(\left(b_{1} b_{2}\right) b_{3}\right)$. Obtain a formula for a_{n}.

Solution: We set $a_{1}-1$. The number of ways of bracketing $b_{1} b_{2} \cdots b_{n+1}$ is

$$
\sum_{i=1}^{n} N(1, i) N(i+1, n+1)
$$

where $N(i, j)$ denotes the number of ways of bracketing $b_{i} b_{i+1} \cdots b_{j}$, if $i<j$, and $N(i, j)=1$, if $i=j$. Then

$$
\begin{equation*}
a_{n+1}=a_{1} a_{n}+a_{2} a_{n-1}+\cdots+a_{n-1} a_{2}+a_{n} a_{1}, \quad n-1,2, \ldots \tag{34.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
A(x)=\sum_{n=1}^{\infty} a_{n} x^{n} . \tag{34.2}
\end{equation*}
$$

From (34.1) and (34.2) we obtain

$$
\begin{aligned}
\Lambda(s)^{2} & =\left(\sum_{i=1}^{\infty} a_{1} i^{i}\right)\left(\sum_{j=1}^{\cdots} a_{2} s^{j}\right) \\
& =\sum_{i, j=1}^{\infty} a_{i} a_{j} x^{i+j}=\sum_{n=1}^{\infty} \sum_{\substack{i, j=1 \\
i+j+1}}^{\because} a_{i} a_{j} x^{i+j} \\
& =\sum_{n=1}^{\infty}\left(a_{1} a_{n}+a_{2} a_{n-1}+\cdots+\left(a_{n} a_{1}\right) x^{n+1}\right. \\
& =\sum_{n=1}^{\infty} a_{n+1} x^{n+1}=A(x)-x,
\end{aligned}
$$

that is

$$
\begin{equation*}
A(x)^{2}-A(x)+x=0 . \tag{34.3}
\end{equation*}
$$

Solving the quadratic equation (34.3) for $A(x)$, we obtain

$$
A(x)=(1 \pm \sqrt{1-4 x}) / 2 .
$$

As $A(0)=0$ we must have

$$
\begin{equation*}
A(x)=(1-\sqrt{1-4 x}) / 2 . \tag{34.4}
\end{equation*}
$$

By the binomial theorem we have

$$
\begin{equation*}
\sqrt{1-4 x}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4)^{n} x^{n} \tag{34.5}
\end{equation*}
$$

so that, from (34.4) and (34.5), we obtain

$$
\begin{equation*}
A(x)=-\frac{1}{2} \sum_{n=1}^{\infty}\binom{1 / 2}{n}(-4)^{n} \cdot x^{n} \tag{34.6}
\end{equation*}
$$

Equating coefficients of $x^{n}(n \geq 2)$ in (34.6), we obtain

$$
\begin{aligned}
a_{n} & =-\frac{1}{2}\binom{1 / 2}{n}(-1)^{n} 2^{2 n} \\
& =(-1)^{n-1} 2^{2 n-1}\binom{1 / 2}{n} \\
& =(-1)^{n-1} 2^{2 n-1}(-1)^{n-1} \frac{1.3 .5}{\left.\frac{.(2 n}{2^{n} n!}-3\right)}
\end{aligned}
$$

litat is:

$$
a_{n}=\frac{1.3 .5 \ldots(2 n-3)}{n!} 2^{n-1}, \quad n \geq 2 .
$$

35. Evaluate the limit

$$
\begin{equation*}
L=\lim _{y \rightarrow 0} \frac{1}{y} \int_{0}^{\pi} \tan (y \sin x) d x \tag{35.0}
\end{equation*}
$$

Solution: We begin by showing that

$$
\begin{equation*}
t \leq \tan t \leq t+t^{3}, \quad 0 \leq t \leq 1 \tag{35.1}
\end{equation*}
$$

We set

$$
f(t)=(\tan t-t) / t^{3}, \quad 0<t \leq 1,
$$

and deduce that

$$
f^{\prime}(t)=g(t) / t^{4}, \quad 0<t \leq 1
$$

where

$$
\left\{\begin{array}{l}
g(t)=t \tan ^{2} t-3 \tan t+3 t \\
g^{\prime}(t)=\frac{\sin t}{\cos ^{3} t}(2 t-\sin 2 t)
\end{array}\right.
$$

Hence $g^{\prime}(t)>0,0<t \leq 1$, which implies that $g(t)>g(0)=0,0<t \leq 1$. We deduce that f is an increasing function on $0<t \leq 1$, so that

$$
f(0+) \leq f(t) \leq f(1), \quad 0<t \leq 1
$$

that is

$$
\frac{1}{3} \leq \frac{\tan t-t}{t^{3}} \leq \tan (1)-1, \quad 0<t \leq 1
$$

Since $\tan (1)<\tan (\pi / 3)=\sqrt{3}<2$, we have

$$
0<\frac{\tan t-t}{t^{3}} \leq 1, \quad 0<t \leq 1
$$

which completes the proof of (35.1).
For $0 \leq x \leq \pi$ and $0<y \leq 1$ we have $0 \leq \sin x<1$ and so

$$
\begin{equation*}
0 \leq y \sin x \leq 1 \tag{35.2}
\end{equation*}
$$

Hence, by (35.1) and (35.2), we have

$$
y \sin x \leq \tan (y \sin x) \leq y \sin x+(y \sin x)^{3}
$$

so that

$$
\begin{equation*}
0 \leq \frac{\tan (y \sin x)-y \sin x}{y} \leq y^{2} \sin ^{3} x \tag{35.3}
\end{equation*}
$$

Integrating (35.3) over $0 \leq x \leq \pi$, we obtain

$$
\begin{equation*}
0 \leq \frac{1}{y} \int_{0}^{\pi}(\tan (y \sin x)-y \sin x) d x \leq y^{2} \int_{0}^{\pi} \sin ^{3} x d x \tag{35.4}
\end{equation*}
$$

Ietting $y \rightarrow 0+$ in (35.4) we deduce that

$$
\lim _{y \rightarrow 0+} \frac{1}{y} \int_{0}^{\pi}(\tan (y \sin x)-y \sin x) d x=0
$$

and thus

$$
\lim _{y \rightarrow 0+} \frac{1}{y} \int_{0}^{\pi} \tan (y \sin x) d x=\int_{0}^{\pi} \sin x d x
$$

that is

$$
\begin{equation*}
\lim _{y \rightarrow 0+} \frac{1}{y} \int_{0}^{\pi} \tan (y \sin x) d x=2 . \tag{35.5}
\end{equation*}
$$

Replacing y by $-y$ in (35.5), we see that

$$
\begin{equation*}
\lim _{y \rightarrow 0-} \frac{1}{y} \int_{0}^{x} \tan (y \sin x) d x=2 \tag{35.6}
\end{equation*}
$$

also. Hence, from (35.5) and (35.6), we find that $\ell=2$.
36. Let (be a real number with $0 \lll<$. Prove that there are infinitely many integers n for which

$$
\begin{equation*}
\cos n \geq 1-6 . \tag{36;.0}
\end{equation*}
$$

Solution: According to a theorem of Ifurwitz (1891): if θ is an irrational number, there are infinitely many rational numbers a / b with $b>$ 0 and $G C D(a, b)=1$ such that

$$
\left|\theta-\frac{a}{b}\right|<\frac{1}{\sqrt{5} b^{2}} .
$$

As π is irrational, Ilurwitz's theorem implies that there are infinitely many rational numbers n / k with $k>0$ and $G C D(n, k)=1$ such that

$$
\left|2 \pi-\frac{n}{k}\right|<\frac{1}{\sqrt{5} k^{2}},
$$

or equivalently

$$
\begin{equation*}
|2 \pi k-n|<1 /(\sqrt{5} k) . \tag{36.1}
\end{equation*}
$$

Let $0<\epsilon<1$. We consider those integers n and k satisfying (36.1) for which $k>1 /(\sqrt{5} \epsilon)$. There are clearly an infinite number of such positive integers k, and for each such k there is an integer n such that $|2 \pi k-n|<\epsilon$. For such pairs (n, k) we have

$$
1-\cos n \leq|1-\cos n|
$$

$$
\begin{aligned}
& =2\left|\sin \left(k \pi+\frac{n}{2}\right)!!\sin \left(k \pi-\frac{n}{2}\right)\right| \\
& \leq 2\left|\sin \left(k \pi-\frac{n}{2}\right)\right| \\
& \leq 2\left|k \pi-\frac{n}{2}\right| \\
& =12 l: \pi \cdot n \mid \\
& <1,
\end{aligned}
$$

37. Determine all the functions f, which are everywhere differentiable and satisfy

$$
\begin{equation*}
f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \tag{37.0}
\end{equation*}
$$

for all real x aud y with $x y \neq 1$.

Solution: Let $f(x)$ satisly (37.0). Differentiating (37.0) partially with re spect to each of x and y, we obtain

$$
\begin{equation*}
f^{\prime}(x)=\frac{1+y^{2}}{(1-x y)^{2}} f^{\prime}\left(\frac{x+y}{1-x y}\right) \tag{37.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(y)=\frac{1+x^{2}}{(1-x y)^{2}} f^{\prime}\left(\frac{x+y}{1-x y}\right) \tag{37.2}
\end{equation*}
$$

Eliminating common terms in (37.1) and (37.2), we deduce that

$$
\begin{equation*}
\left(1+x^{2}\right) f^{\prime}(x)=\left(1+y^{2}\right) f^{\prime}(y) \tag{3ī.3}
\end{equation*}
$$

As the left side of (37.3) depends only on x and the right side only on y, each side of (37.3) must be equal to a constant c. Thus we have

$$
f^{\prime}(x)=\frac{c}{1+x^{2}}
$$

and so

$$
f(x)=r \arctan x+d,
$$

for sonie constant d. However, taking $y=0$ in (37.0), we obtain $f(x)+f(0)=$ $f($.r) sin that $f(0)=0$ and $d-0$. Clearly $f(x)=r \arctan x$ satisfics (37.0?, and so all solutions of (37.0) are given by

$$
f(x)-r \arctan x,
$$

where r is a constaut.
38. Λ point X is chosen inside or on a circle. Two perpendicular chords $A C$ and $B D$ of the circle are drawn through X. (ln the case when X is on the circle, the degenerate case, when one chord is a diameter and the other is reduced to a point, is allowed.) Find the greatest and least values which the sum $S=|A C|+|R D|$ can take for all possible choices of the point X.

Solution: We can chorse an (x, y)-coordinate system in the plane so that the centre of the circle is at the origin, $B D$ is parallel to the x-axis, $A(!$ is parallel to the y-axis, B lies to the left of D, and A lies above C. Let X denote a point (r, s) such that

$$
\begin{equation*}
r^{2}+s^{2} \leq R^{2}, \tag{38.1}
\end{equation*}
$$

where R is the radius of the circle. Then the coordinates of the points A, B, C, D are

$$
\left(r, \sqrt{R^{2}-r^{2}}\right), \quad\left(-\sqrt{R^{2}-s^{2}}, s\right), \quad\left(r,-\sqrt{R^{2}-r^{2}}\right), \quad\left(\sqrt{R^{2}-s^{2}}, s\right)
$$

respectively. Thus wo have

$$
|A C|=2 \sqrt{R^{2}-r^{2}}, \quad|B D|=2 \sqrt{R^{2}-s^{2}},
$$

and so

$$
S(r, s)=|A C|+|B D|=2\left(\sqrt{R^{2}-r^{2}}+\sqrt{R^{2}-s^{2}}\right)
$$

We wish to find the maximum and minimum values of $S(r, s)$ subject to the constraint (38.1).

Hirst we determine the maximum value of $S(r, s)$. Clearly, we have

$$
\sqrt{R^{2}-r^{2}}+\sqrt{R^{2}-s^{2} \leq 2 R}
$$

and this proves that

$$
\max _{, s^{\prime}<\mu^{2}} S(r, s)=S(0.0)-1 / R
$$

finally, we determine the minimum value of $S(r, s)$. We have

$$
\begin{aligned}
& \left(\sqrt{ } R^{2}-r^{2}+\sqrt{ } R^{2}-s^{2}\right)^{2}=2 R^{2}-\left(r^{2}+s^{2}\right)+2 \sqrt{R^{2}-r^{2}} \sqrt{R^{2}}-s^{2} \\
& \geq 2 R^{2}-\left(r^{2}+s^{2}\right) \\
& \geq 2 R^{2}-\left(r^{2}+s^{2}\right)+\left(r^{2}+s^{2}\right)-R^{2} \\
& =R^{2} \text {, }
\end{aligned}
$$

so that

$$
\sqrt{R^{2}-r^{2}}+\sqrt{R^{2}-s^{2}} \geq R
$$

This proves that

$$
\min _{r^{2}+s^{2} \leq R^{2}} S(r, s)=S(\pm R .0)=S(0, \pm R)=2 R
$$

39. For $n=1,2, \ldots$ define the sel A_{n} by

$$
\Lambda_{n}= \begin{cases}\{0,2,4,6,8, \ldots\}, & \text { if } n \equiv 0(\bmod 2), \\ \{0,3,6, \ldots, 3(n-1) / 2\}, & \text { if } n \equiv 1(\bmod 2) .\end{cases}
$$

Is it true that

$$
\bigcup_{n=1}^{\infty}\left(\bigcap_{k=1}^{\infty} \Lambda_{n+k}\right)=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=1}^{\infty} \Lambda_{n+k}\right) ?
$$

Solution: We set $X=\{0,2,4,6 \ldots\}$ and $Y=\{0,3,6,9, \ldots\}$. Clearly, we have

$$
\Lambda_{1} \cdot A_{3} \subset A_{5}\left(\cdot \cdots \cdot \left(\bigcup_{n=0}^{\infty} A_{2 n+1}=r\right.\right.
$$

and

$$
A_{2} \quad A_{1} \cdot A_{1}-\cdots=I
$$

Hence, we have for $n:-1.2 . .$.

$$
\begin{aligned}
\bigcap_{k=1}^{\infty} \Lambda_{n+k} & =\bigcap_{\substack{k k=1 \\
n+k=0(\bmod 2)}}^{\infty} \Lambda_{n+k} \cap \bigcap_{n \neq k=1}^{\infty} \Lambda_{n+k} \\
& =\lambda \cap l B_{n},
\end{aligned}
$$

where

$$
B_{n}== \begin{cases}A_{n+1}, & \text { if } n \equiv 0(\bmod 2), \\ A_{n+2}, & \text { if } n \equiv 1 \quad(\bmod 2),\end{cases}
$$

and so

$$
\begin{aligned}
\bigcup_{n=1}^{\infty}\left(\bigcap_{k=1}^{\infty} A_{n+k}\right) & =\bigcup_{r=1}^{\infty}\left(X \cap B_{n}\right) \\
& =X \cap\left(\bigcup_{n=1}^{\infty} B_{n}\right) \\
& =X \cap\left(\bigcup_{n=1}^{\infty} A_{2 n+1}\right) \\
& =X \cap Y .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\bigcup_{k=1}^{\infty} A_{n+k} & =\bigcup_{\substack{k=1 \\
n+k:=(\bmod 2)}}^{\infty} A_{n+k} \cup \bigcup_{n+k \equiv i=1}^{\infty} A_{n+k} \\
& =X \cup Y
\end{aligned}
$$

for all $n=1,2, \ldots$, so that

$$
\bigcap_{n=1}^{\infty}\left(\bigcup_{k=1}^{\infty} A_{n+k}\right)=X \cup Y
$$

Hence, we see that

$$
\bigcup_{n=1}^{\infty}\left(\bigcap_{k=1}^{\infty} \Lambda_{n+1}\right) \neq \bigcap_{n=1}^{\infty}\left(\bigcup_{n=1}^{\infty} A_{n+k}\right),
$$

40. Λ sequence of repeated independent trials is performed. Each trial has probability p of being successful and probability $q=1-p$ of failing. The trials are continued until an uninterrupted sequence of n successes is obtained. The variable X denotes the number of trials required to achieve this goal. If $p_{k}=\operatorname{Prob}(X=k)$, determine the probability generating function $P(x)$ defined by

$$
\begin{equation*}
P^{\prime}(x)=\sum_{k=0}^{\infty} p_{k} x^{k} . \tag{40.0}
\end{equation*}
$$

Solution: Clearly, we have

$$
p_{k}= \begin{cases}0 & , k=0,1, \ldots, n-1 \\ p^{n} & , k=n \\ q p^{n} & , k=(n+1),(n+2), \ldots, 2 n\end{cases}
$$

For $k>2 n$ we have

$$
p_{k}=\operatorname{Prob}(A) \operatorname{Prob}(B) \operatorname{Prob}\left(C^{\prime}\right),
$$

where A, B, C, represent events as follows:
(A) no n consecutive successes in the first $k-n-1$ trials;
(B) $(k-n)$ th trial is a faihure;
(C) n successes in last n trials.

Then $p_{k}=(1-\operatorname{Prob}(D)) q p^{n}$, where D represents the event of at least one run of n consecutive successes in the first $k-n-1$ trials, that is

$$
p_{k}=\left(1-\sum_{i=0}^{k-n-1} p_{1}\right) q p^{n}, \quad k>2 n
$$

Hence we have

$$
P(x)=p^{n} \cdot x^{n}+q p^{n}\left(x^{n+1}+\cdots+x^{2 n}\right)+q p^{n} \sum_{k=2 n+1}^{\infty}\left(1-\sum_{i=0}^{k-n-1} p_{1}\right) x^{k},
$$

and sor

$$
\begin{aligned}
\frac{P(x)}{p^{n} x^{n}} & =1+q\left(x+\cdots+x^{n}\right)+q \sum_{k=2 n+1}^{\infty} x^{k-n}-q \sum_{k=2 n+1}^{\infty} \sum_{i=0}^{k-n-1} p_{i} x^{k-n} \\
& =1+q \frac{\left(x-x^{n+1}\right)}{(1-x)}+q \frac{x^{n+1}}{(1-x)}-q x^{n+1} \sum_{l=0}^{\infty} \sum_{i=0}^{n+1} p_{i} x^{l} \\
& =\frac{(1-x+q x)}{(1-x)}-q x^{n+1} \sum_{l=0}^{\infty} \sum_{i=n}^{n+1} p_{i} x^{l} \\
& =\frac{(1-x+q x)}{(1-x)}-q x^{n+1} \sum_{l=0}^{\infty} \sum_{r=0}^{l} p_{n+r} x^{l} \\
& =\frac{(1-x+q x)}{(1-x)}-q x^{n+1} \sum_{l=0}^{\infty} \sum_{r, 0=0}^{1} p_{n+r} x^{r+s} \\
& =\frac{(1-x+q x)}{(1-x)}-q x^{n+1} \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} p_{n+r} x^{r+s} \\
& =\frac{(1-x+q x)}{(1-x)}-q x\left(\sum_{r=0}^{\infty} p_{n+r} x^{n+r}\right)\left(\sum_{s=0}^{\infty} x^{s}\right)
\end{aligned}
$$

that is

$$
\frac{P(x)}{p^{n} x^{n}}=\frac{(1-x+q x)}{(1-x)}-q x \frac{P(x)}{(1-x)}
$$

so that

$$
P(x)=\frac{(1-p x) p^{n} x^{n}}{1-x+q p^{n} x^{n+1}} .
$$

41. A, B, C, D are four points lying on a circle such that $A B C D$ is a convex quadrilateral. Determine a formula for the radius of the circle in terms of $a=|A B|, b=|B C|, c-|C D|$ and $d=|D A|$.

Solution: We first prove the following result:
The radius of the circumcircle of a $\triangle L, M N$ is given by

$$
\begin{equation*}
R=\frac{l m n}{\sqrt{(l+n+n)}(l+m-n)(l-m+n)(-l+m+n)}, \tag{41.1}
\end{equation*}
$$

where

$$
l=|M N|, \quad m=|N L|, \quad n={ }^{\prime} L M \mid .
$$

Let C denote the circumcentre of $\triangle L M N$, so that $|L C|=\left|M C^{\prime}\right|=|N C|=R$. Set

$$
\alpha=\angle M C^{\prime} N, \quad \beta=\angle N C L, \quad \gamma=\angle L C M,
$$

so that $a+\beta+\gamma=2 \pi$. By the sine law applied to $\triangle M C N$ we have

$$
\frac{l}{\sin a}=\frac{R}{\sin ((\pi-\alpha) / 2)}
$$

so that

$$
l=R \frac{\sin a}{\cos (a / 2)}=2 R \sin (\alpha / 2)
$$

Simularly, we have

$$
m=2 R \sin (\beta / 2), \quad n=2 R \sin (\gamma / 2) .
$$

'Chus we obtain

$$
\begin{aligned}
\frac{n}{2 R} & =\sin (\gamma / 2) \\
& =\sin \left(\pi-\frac{(a+\beta)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sin \left(\frac{\alpha}{2}+\frac{3}{2}\right) \\
& =\sin (\alpha / 2) \cos (\beta / 2)+\cos (\alpha / 2) \sin (3 / 2) \\
& =\frac{1}{2 \pi} \sqrt{1-\frac{m^{2}}{1 \Pi}}+\frac{m}{2 R} \sqrt{1} l^{2}
\end{aligned}
$$

isnd so

$$
n-l \sqrt{1} \frac{m^{2}}{1 R^{2}}+m \sqrt{1-\frac{R^{2}}{1 R^{2}}}
$$

Squaring both siders we obtin

$$
n^{2}=l^{2}\left(1-\frac{m^{2}}{4 R^{2}}\right)+m n^{2}\left(1-\frac{l^{2}}{4 R^{2}}\right)+2 l m \sqrt{ }\left(1-\frac{l^{2}}{4 R^{2}}\right)\left(1-\frac{m}{4} R^{2}\right)
$$

and so

$$
2 l m n \sqrt{\left(1-\frac{l^{2}}{4} \overline{R^{2}}\right)\left(1-\frac{m^{2}}{4 R^{2}}\right)}=\left(n^{2}-l^{2}-m^{2}\right)+\frac{l^{2} m^{2}}{2 R^{2}} .
$$

Squaring again we find that

$$
\begin{array}{r}
A l^{2} m^{2}\left(1-\frac{l^{2}}{4 K^{2}}\right)\left(1-\frac{m^{2}}{4 R^{2}}\right)-\left(n^{2}-l^{2}-n l^{2}\right)^{2}+\frac{l^{4} n^{4}}{4 R^{4}} \\
+\frac{l^{2} m^{2}}{R^{2}}\left(n^{2}-l^{2}-m^{2}\right)
\end{array}
$$

giving, after some simplification

$$
\left(n^{2}-l^{2}-m^{2}\right)^{2}-4 l^{2} n^{2}=-\frac{l^{2} n^{2} n^{2}}{R^{2}}
$$

which establishes (41.1).
Keturning to the original problem, we sel $x-\left|A C^{\prime}\right|$, and $\theta=/ A B C^{\prime}$, so that $/ C D A=\pi-\theta$. By the cosine law in $\triangle A B C$ and $\triangle A C D$, we have

$$
\begin{equation*}
x^{2}=a^{2}+b^{2}-2 a b \cos \theta \tag{41.2}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{2}=c^{2}+d^{2}-2 c d \cos (\pi-\theta)=c^{2}+d^{2}+2 r d \cos \theta \tag{41.3}
\end{equation*}
$$

Fliminating x^{2} from (-11.2) and (-11.8), we ohtain

$$
\cos \theta=\frac{a^{2}+b^{2}}{2(a h+c a l)} c^{2} d^{2}
$$

(ising this axpression for rosil in (11.2), we pet

$$
\begin{aligned}
r^{2} & =a^{2}+b^{2} a b^{\left(a^{2}+b^{2} \quad a^{2} \quad d^{2}\right)} \\
& =\frac{(a b+c a l)}{(a b+c a)(a d+b c)}
\end{aligned}
$$

so that

$$
x=\sqrt{\frac{(a c+b d)(a d+b c)}{(a b+c d)}}
$$

The radius r of the circle passing through A, B, C, D is the circumradius of $\triangle A B(\prime$, and so by (.11.1) is given by

$$
\begin{aligned}
v & -\sqrt{(a+b+x)(a+b-x)(a \cdots b+x)(\cdots a+b+x)} \\
& =\frac{a b x}{\sqrt{\left((a+b)^{2}-x^{2}\right)\left(x^{2}-(a-b)^{2}\right)}} .
\end{aligned}
$$

Next we have

$$
\begin{aligned}
(a+b)^{2}-x^{2} & =(a+b)^{2}-\frac{(a c \div b d)(a d+b c)}{(a b+c d)} \\
& =\frac{a b\left((a+b)^{2}-(c-d)^{2}\right)}{(a b+c d)} \\
& =\frac{a b(a+b-c+d)(a+b+c-d)}{(a b+c d)}
\end{aligned}
$$

and similarly

$$
x^{2}-(a-b)^{2}=\frac{a b(-a \div b+c+d)(a-b+c+d)}{(a b+c d)}
$$

so that

$$
r=\sqrt{\frac{(a b+c d)(a c:+b d)(a d+b c)}{(-a+b+c+d)(a-b+r+d)(a+b-c+d)(a+b+r}} d
$$

42. I.e: $1 / 3 \mathrm{C}$ ' $/$) be a consex quadrilateral. Leet I' be the boint ontside
 similaty dofined. Prowe that the lines $P R$ and obe are of ermal lought and perpendicular.

Solution: We consider the quadrilateral $A B(? D)$ to be in the complex plane and denote the vertices $A, B,(?, l)$ by the complex mumbers a, b, c, b. Then the midpoints H, h, L, M of the sides $A B, B C$ ', (!' D, I, A are represented by $(a+b) / 2,(b+c) / 2,(c+d) / 2,(d+a) / 2$. Let p represent the point. P. As $|P I I|=|B H|$ and $P U \perp B H$ we have

$$
p \cdot\left(\frac{a \mid b}{2}\right)=i\left(\begin{array}{cc}
b & \binom{a+b}{2}
\end{array}\right)
$$

so that

$$
p=\left(\frac{1-i}{2}\right)(a \mid i b)
$$

Similarly, we find that

$$
\left\{\begin{array}{l}
q=\binom{1-i}{2}(b \mid i c) . \\
r=\left(\frac{1-i}{2}\right) \\
s=\left(\frac{1-1}{2}\right) \\
(d+i d) .
\end{array}\right.
$$

lirom this we obtain

$$
\begin{aligned}
p-r & =\binom{1--i}{2}((a-c)+i(b-d)) \\
q-s & -\left(\frac{1-i}{2}\right)((b-d)+i(c-a)! \\
& =-i\left(\frac{1-i}{2}\right)((a r) \mid i(b-d))
\end{aligned}
$$

so that. $ย-s=-i(p-r)$, proving that $|P R|=|Q S|$ and $r R \perp Q S$.
43. Detormine polynomials $p(x, y, z, w)$ and $q(x, y, z, u)$ wilh raal corfficiont: such that

$$
\begin{align*}
& (x y+z+w)^{2}-\left(r^{2} \cdot 2 z\right)\left(y^{2} \cdot 2 w\right) \tag{13.0}\\
& -(p(x, y, \therefore, w))^{2} \quad\left(r^{2} \quad 2:\{(\mu: r,!\cdot \cdot, u))^{2} .\right.
\end{align*}
$$

Solution: We seek a solution of (43.0) of the form

$$
\left\{\begin{array}{l}
p(x, y, z, w)=x y+X, \tag{43.1}\\
y(x, y, z, w)=y+Y,
\end{array}\right.
$$

where X and Y are polynomials in x, w, and z. Substituting (43.1) in (43.0) and simplifying, we obtain

$$
\begin{align*}
&\left((z w)^{2} \mid 2 x^{2} w:\right)+2 x(z+w) y \tag{43.2}\\
&=\left(X^{2}-\left(x^{2}-2 z\right) Y^{2}\right)+2\left(x X-\left(x^{2}-2 z!Y\right) y\right.
\end{align*}
$$

which gives

$$
\begin{cases}x^{2}-\ldots\left(x^{2}-2 z\right) Y^{2} & -(z-w)^{2}+2 x^{2} u \tag{-13.3}\\ r X-\left(x^{2}-2 z\right) Y & -x(z \mid w) .\end{cases}
$$

From the second equation in (13.3) we have

$$
\left.x=\left(\left(x^{2}-2 z\right)\right\rangle+x(z \mid u:)\right) / x,
$$

and, using this in the first equation in (43.3), we obtain after simplification

$$
z Y^{2}-x(z \mid w) Y \mid x^{2} w=0
$$

Solving for Y^{\prime} we find that $Y^{\prime}=x w /=$ or $Y=x$. Disearding the first solntion as we are seeking polynomiads $\boldsymbol{\lambda}$ and ζ, we have

$$
X=x^{2}-z \vdash u, \quad Y=x,
$$

and so we may take

$$
p(x, y, z, w)=x y+x^{2}-z+w, \quad q(x, y, z, u)=x+y .
$$

 fantion satisflying

$$
\left\{\begin{array}{l}
f(0)=0 \tag{14.0}\\
|f(z)-f(w)|=|z \quad u|
\end{array}\right.
$$

for all z in \mathbf{C} and $w=0,1, i$. Prove that:

$$
f(z)-f(1) z \text { or } f(1) \vdots,
$$

where $|f(1)|=1$.

Solution: From (14.0) we have

$$
\begin{equation*}
|f(z)|=\mid z_{1}^{\prime}, \tag{44.1}
\end{equation*}
$$

$$
\begin{equation*}
|f(z)-\alpha|-|z-1|, \tag{44.2}
\end{equation*}
$$

$$
\begin{equation*}
|f(z)-i 3|=|z-i|, \tag{41.3}
\end{equation*}
$$

which hold for all z in \mathbf{C}, and where

$$
\begin{equation*}
\alpha=f(1), \quad 3=f(i) \tag{44.4}
\end{equation*}
$$

Taking $z=1, i$ in (14.1) and $z=i$ in (44.2), we obtain

$$
\begin{equation*}
\left|\alpha_{\mid}=\right|\{j|=1, \quad| a-; \mid=\sqrt{2} . \tag{14.5}
\end{equation*}
$$

Hence, we have

$$
\begin{aligned}
& \alpha^{2}+; j^{2}=\alpha^{2} 3 ; 3+\alpha \ddot{\alpha} ; 3^{2} \\
& =\alpha_{i} \beta(\alpha \bar{\beta}+\bar{\sigma} \beta) \\
& =n \beta(\alpha \bar{\alpha}+B \bar{\beta}-(\alpha-\beta)(\bar{\alpha}-3)) \\
& =r r i 3\left(|\alpha|^{2}+\left.!3\right|^{2}-|\alpha-i|^{2}\right) \\
& \alpha_{i} ;(1+1 \cdot 2) \\
& \text { II. }
\end{aligned}
$$

so that
(44.6)

$$
\beta=\epsilon \alpha, \quad \epsilon= \pm i
$$

Next, squaring (44.2) and appealing to (44.1) and (44.5), we obtain

$$
\begin{equation*}
\bar{\alpha} f(z)+\alpha \overline{f(z})=z+\bar{z}, \tag{•14.7}
\end{equation*}
$$

for all z in C. Similarly, squaring (44.3) and and appealing to (44.1), (44.5) and (44.6), we obtain

$$
\begin{equation*}
\bar{\alpha} f(z)-\Omega \bar{f}(z)=-c i z+c i \bar{z} \tag{44.8}
\end{equation*}
$$

Adding (44.7) and (44.8), we deduce that

$$
2 \bar{\alpha} f(z)=(1-\epsilon i) z+i 1+c i) \bar{z},
$$

that is, as $r= \pm i, \alpha f(z)=z$ or \ddot{z}. Hence we have

$$
f(z)=f(1) z \text { or } f(1) \bar{z}
$$

where $\mid f(1)!=1$, and it easy to check that both of these satisfy (14.0).
45. If x and y are rational numbers such that

$$
\begin{equation*}
\tan \pi x=y \tag{45.0}
\end{equation*}
$$

prove that $x=k / 4$ for some integer k not congruent to $2(\bmod 4)$.

Solution: As x and y are rational numbers there are integers p, q, r, s such that

$$
\left\{\begin{array}{l}
x=p / q, \quad y=r / s, \quad q>0, \quad s>0, \\
G C D(p, q)=G C \cdot D(r, s)=1 .
\end{array}\right.
$$

The equation (45.0) becomes

$$
\begin{equation*}
\tan \pi \frac{p}{q}=\frac{r}{s} \tag{.15.1}
\end{equation*}
$$

We have, appcaling to DeMoivre's theorem.

$$
\begin{aligned}
\left(\frac{s+i r}{s-i r}\right)^{q} & =\left(\frac{1+i r / s}{1-i r / s}\right)^{q} \\
& =\left(\frac{1+i \tan (\pi p / q)}{1-i \tan (\pi p / q)}\right)^{q} \\
& =\left(\frac{\cos (\pi p / q)+i \sin (\pi p / q)}{\cos (\pi p / q)-i \sin (\pi p / q)}\right)^{q} \\
& =\frac{\cos (\pi p)+i \sin (\pi p)}{\cos (\pi p)-i \sin (\pi p)} \\
& =\frac{(1)^{p}+i .0}{(-1)^{p}-i .0} \\
& =1
\end{aligned}
$$

so that, appealing to the binomial theorem, we have

$$
\begin{aligned}
(s+i r)^{q} & =(s-i r)^{q} \\
& =((s+i r)-2 i r)^{q} \\
& =\sum_{k=0}^{q}\binom{q}{k}(s+i r)^{q-k}(-2 i r)^{k} .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
(-2 i r)^{q} & =-\sum_{k=1}^{q-1}\binom{q}{k}(s+i r)^{q-k} \\
& =-(s+i r) \sum_{k=1}^{q-1}\binom{q}{k}(s+i r)^{q-k-1},
\end{aligned}
$$

that is

$$
\begin{equation*}
(-2 i r)^{q}=(s+i r)(x+i y) \tag{45.2}
\end{equation*}
$$

for some integers r and y. Taking the modulus of both sides of (45.2), we obtain

$$
2^{2 q} r^{2 q}=\left(s^{2}+r^{2}\right)\left(x^{2}+y^{2}\right)
$$

Le:t p he an odd prime dividing $s^{2}+r^{2}$. Then p divides $2^{2 q} r^{2 \varphi}$ and so p divides r. Thus p divides $s^{2}-\left(s^{2}+r^{2}\right)-r^{2}$, that is, p divides s. This contradicts $\left(x C D(r, s)=1\right.$. Thus $s^{2}+r^{2}$ has no odd prime divisors and so must be a power of 2, say

$$
s^{2}+r^{2}=2^{l}, \quad l \geq 0
$$

Further, if $l \geq 2$, then s and r ate both even, which is impossible, and so $l=0$ or 1 . As $s>0$ we must have

$$
(r, s)=(0,1) \quad \text { or } \quad(\pm 1,1)
$$

The first possibility gives $x=k / 4$, where $k=4 p$, while the second possibility gives $x=k / 4$, where $k \equiv 1$ (mod 2), thus completing the proof.

Second solution: (due to R. Dreyer) We make use of the fact that there are integers $c(n, r), \quad n=1,2, \ldots ; r=0,1, \ldots,[n / 2]$, such that

$$
\begin{equation*}
2 \cos n \theta=\sum_{r=0}^{[n / 2]} c(n, r)(2 \cos \theta)^{r-2 r} \tag{45.3}
\end{equation*}
$$

for any real number θ. The integers $c(n, r)$ are given recursively by

$$
c(1,0)=1, \quad c(2,0)=1, \quad c(2,1)=-2,
$$

and for $n \geq 3$

$$
\begin{cases}c(n, 0) & =1 \\ c(n, r) & =c(n-1, r)-c(n-2, r-1) ; \quad 1 \leq r \leq(n-1) / 2 \\ c(n, n / 2) & =(-1)^{n / 2} 2, \quad n \text { even }\end{cases}
$$

Now, as x is rational, we may write $x=p / q$, where $G^{\prime} C^{\prime} D(p, q)=1$ and $q>0$. Further, as $y=\tan \pi x$ is rational, so is the quantity

Appealing in (45.3), with $n-g$ and $\theta=2 \pi x=2 \pi p / g$, we ser that z is a rational root of the monic integral poly nomiad

$$
f(x)-\sum_{r=0}^{!r / ?!]} c(n, r) x^{\prime \prime} 2 t-2 .
$$

Hence, z must be an integer. But $|z|=2|\cos 2 \pi x| \leq 2$ so that $z=0, \pm 1$, or ± 2, that is

$$
\cos (2 \pi p / 4)=0, \pm 1 / 2, \pm 1,
$$

giving

$$
\frac{2 \pi p}{4}=(2 l+1) \frac{\pi}{2}, \quad(3 l \pm 1) \frac{\pi}{3}, \quad l \pi,
$$

for some iuteger l. Thus, we have

$$
x=\frac{p}{q}=\frac{2 l+1}{4}, \quad \frac{3 l \pm 1}{6}, \quad \text { or } \quad \frac{l}{2}
$$

Only the first pussibility, and the third possibility with $/$ even, have $y=$ tan πx rational, and hence $x=k / 4$. where k is not congruent to $2(\bmod 4)$.
46. Let l ' be a point inside the triangle $A B C$. Let $A P$ meet $B C$. at $D, B P$ meet $C . A$ at F, and $C P$ medt $A B$ at F. prove that

$$
\begin{equation*}
\left.\underset{|P A||P B|}{P I||P E|}+\frac{|P B|\left|P^{\prime} C\right|}{{ }_{P} \mid} P E| | P F \right\rvert\,+\frac{|P C||P A|}{|P F|} \geq 12 . \tag{16.0}
\end{equation*}
$$

Solution: Let $S_{,}, S_{1}, S_{2}^{\prime}, S_{3}$ denote the areas of $\triangle A B C, \triangle P B C, \triangle P C A$, $\triangle P A B$ respectively, so that $S=S_{1}+S_{2}+S_{3}$. Since $\triangle A B C$ and
$\triangle P^{\prime} B C^{\prime}$ share the side $B C^{\prime}$, we have

$$
\frac{|A D|}{|P D D|}=\frac{S}{S}
$$

so that.

$$
\begin{aligned}
& \frac{|P A|}{|P D|}= \frac{|A D|-|P D|}{|P D|}-||D| \\
& S_{1 P D \mid}^{\mid P 1}-1 \\
& S_{1} 1-S_{1}-S_{2}+S_{3} \\
& S_{1}
\end{aligned}
$$

Simularly, we haw

$$
|P B|=\frac{S_{3}+S_{1}}{\left|S_{2} B\right|}, \quad \frac{|P C|}{|P \cdot|}=\frac{S_{1}+S_{2}}{S_{3}} .
$$

Hence, we have

$$
\begin{aligned}
& \frac{|P A||P B|}{\left|P D_{i}\right| P E \mid}+\frac{|P B||P C|}{\left|P^{2} E\right|\left|P^{\prime}\right|}+\frac{|P C||P A|}{\left|P P^{\prime}\right||P C|} \\
& =\frac{\left(S_{2}+S_{3}\right)\left(S_{3}+S_{1}\right)}{S_{1} S_{2}}+\frac{\left(S_{3}+S_{1}\right)\left(S_{1}+S_{2}\right)}{S_{2} S_{3}}+\frac{\left(S_{1}+S_{2}\right)\left(S_{2}+S_{3}\right)}{S_{3} S_{1}} \\
& =\left(\frac{S_{3}}{S_{1}}+\frac{S_{3}}{S_{2}}+1+\frac{S_{3}^{2}}{S_{1} S_{2}}\right)+\left(\frac{S_{1}}{S_{2}}+\frac{S_{1}}{S_{3}}+1+\frac{S_{1}^{2}}{S_{2} S_{3}}\right) \\
& +\left(\frac{S_{2}}{S_{3}}+\frac{S_{2}}{S_{1}}+1+\frac{S_{2}^{2}}{S_{3} S_{1}}\right) \\
& =\left(\frac{S_{3}}{S_{1}}+\frac{S_{1}}{S_{3}}\right)+\left(\begin{array}{l}
S_{3} \\
S_{2}
\end{array}+\frac{S_{2}}{S_{3}}\right)+\left(\frac{S_{1}}{S_{2}}+\frac{S_{2}}{S_{1}}\right) \\
& +3+\left(\frac{S_{1}^{2}}{S_{2} S_{3}}+\frac{S_{2}^{2}}{S_{3} S_{1}}+\frac{S_{3}^{2}}{S_{1} S_{2}}\right) \\
& \geq 2+2+2+3+3=12 \text {, }
\end{aligned}
$$

by the arithmelic-geometric mean inequality, which completes the proof of (46.0).
47. Let l and n be positive integers such that

$$
1<l<n, \quad C C D(l, n)=1 .
$$

Define the integer k unicuuely by

$$
1<k<n, \quad l: l \equiv-1(\bmod n) .
$$

Let al be the $k \times 1$ matiox whose $(1,0)$ the cultry is

$$
(i-1) 1+j
$$

 and witing the maties as the rows of \mathcal{V}. What is the relatimensip belween

Solution: If $A=\left[a_{i j} \dot{\text {. }}\right.$ and $B=\left\{b_{i j}\right]^{\prime}$ are two $l: \times l$ watrices, we write $A \equiv$ $B(\bmod n)$ if $a_{i}=b_{i j}(\bmod n), i-1,2, \ldots, k ; j=1,2, \ldots, l$. As $k \cdot l \equiv-1(\bmod n)$ we have modulo n

$$
\begin{aligned}
& M=\left[\begin{array}{cccccc}
1 & 2 & \cdots & l-2 & l-1 & l \\
l+1 & l+2 & \cdots & 2 l-2 & 2 l-1 & 2 l \\
2 l+1 & 2 l+2 & \cdots & 3 l-2 & 3 l-1 & 3 l \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
(k-l) l+1 & (k & 1) l+2 & \cdots & k l-2 & k l-1
\end{array}\right) \\
& \equiv\left[\begin{array}{cccccc}
(k l l-(k-1)) l & (k l-(2 k-1)) l & \cdots & (2 l i+1) l & (k+1) l & l \\
(k l & (k-2)) l & (k l-(2 k-2)) l & \cdots & (2 k+2) l & (k+2) l \\
2 l \\
(k l-(k-3)) l & (k \cdot l-(2 k-3)) l & \cdots & (2 k+3) l & (k+3) l & 3 l \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
(k l) l & (k l l-l i) l & \cdots & 3 k l & 2 k l & k l
\end{array}\right]
\end{aligned}
$$

from which it is clear that the (i, j)-th entry of N is 1 tines the (i, j)-thentry of M modulo n.
48. Let m and n be integers such that $1 \leq m<m$. Let $a_{i j}, i=$ $1,2, \ldots, m ; j=1,2, \ldots, n$, be mn integers which are not all zero, and set

$$
a=\max _{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}\left|a_{13}\right| .
$$

Prove that the system of equations
(18.0)

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{n_{2} 2} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=0
\end{array}\right.
$$

has a colution in integers $x_{1}, r_{2}, \ldots, x_{n}$, not all \%ero, satisfying

$$
\mid x, 1 \leq 1(2 n(1))^{\prime \prime \prime \prime \prime \prime}{ }^{\prime}, \quad 1 \leq j=1
$$

Solution: We set

$$
N=\left\lfloor(2 \pi a)^{n-m} n^{n-m}\right\rfloor,
$$

so that

$$
N>(2 n a) \cdots, \cdots-1, \text { which implies }(N+1)^{n-m}>(2 n a)^{n:} .
$$

Hence, we have

$$
\begin{aligned}
(N+1)^{n} & >(2 n a)^{m}(N+1)^{m} \\
& =(2 n a N+2 n a)^{m}
\end{aligned}
$$

that is, as $a \geq 1$,

$$
\begin{equation*}
(N+1)^{n}>(2 n a N+1)^{m} \tag{18.1}
\end{equation*}
$$

Set

$$
L_{i}=L_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right)-a_{i 1} y_{1}+a_{2} 2 y_{2}+\cdots+a_{i n} y_{n},
$$

for $1 \leq i \leq m$. If $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is a vector of integers satisfying $0 \leq y_{3} \leq N$, $1 \leq j<n$, the corresponding value of $L_{i}=I_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right), 1 \leq i \leq m$, satisfies

$$
-n a N \leq I_{i} \leq n a N, \quad 1 \leq i \leq m,
$$

and so the vector ($L_{1}, L_{2}, \ldots, L_{n_{i}}$) of integers can take on at most $(2 n a N+1)^{m}$ different values. As there are $(N+1)^{n}$ choices of the vector $\left(y_{1}, y_{2}, \ldots, y_{r}\right)$, hy ($\cdot 18.1$) there must be two distinct vectors

$$
u=\left(y_{1}, y_{2}, \ldots, y_{r}\right), \quad v=\left(z_{1}, z_{2}, \ldots, z_{n}\right),
$$

say, giving rise to the same vector ($I_{1}, L_{2}, \ldots, L_{n}$). Set

$$
x_{3} \cdots y_{i} \quad=_{1}, \quad 1<1<n .
$$

$$
L_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=L_{i}\left(z_{1}, z_{2}, \ldots, i_{n}\right), \quad 1 \leq i \leq m,
$$

$\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a solution of (48.0). Finally, $\left|x_{3}\right| \leq N, 1 \leq j \leq n$, follows from the fact that $0 \leq y_{j}, z_{j} \leq N, 1 \leq j \leq n$.
49. Liouville proved that if

$$
\iint(x) e^{g(x)} d x
$$

is an elementary function, where $f(x)$ and $g(x)$ are rational functions with degree of $g(x)>0$, then

$$
\int f(x) r^{s(x)} d x=h(x) e^{3(x)},
$$

where $h(x)$ is a rational function. Use liouville's result to prove that

$$
\int t^{-x^{2}} d x
$$

is not an elementary function.

Solntion: Suppose that $\int e^{-y^{2}} d: c$ is an elementary function. Then, by Liouville's result, there exists a rational function $h(x)$ such that

$$
\int e^{-x^{2}} d x=h(x) e^{-x^{2}} .
$$

Hence, we have

$$
\underset{d x}{d x}\left(h(x) e^{-x^{2}}\right)=e^{-x^{2}}
$$

and so

$$
\begin{equation*}
\ln ^{\prime}(x)-2 x h(x)-1 . \tag{19.1}
\end{equation*}
$$

As $h(x)$ is andional function we may write

$$
\begin{array}{ll}
h(. x) & p(. x) \tag{1..?}\\
y(. x)
\end{array}
$$

where $p(x)$ and $q(x)$ are polynomials with $q(x)$ not identically zero, and $\operatorname{GCD}(p(x), q(x))=1$. Then

$$
\begin{equation*}
h^{\prime}(x)=\frac{p^{\prime}(x) q(x)-p(x) q^{\prime}(x)}{q(x)^{2}}, \tag{49.3}
\end{equation*}
$$

and using (49.2) and (49.3) in (49.1), we obtain

$$
\begin{equation*}
p^{\prime}(x) \psi(x)-p(x) q^{\prime}(x)-2 x p(x) \varphi(x)=\psi(x)^{2} . \tag{49.4}
\end{equation*}
$$

If $g(x)$ is a constant polynomial, say $\eta(x) \equiv k$, then (49.1) becomes

$$
n^{\prime}(x)-2 x p(x)=k,
$$

which is clearly impossible as the degree of the polynomial on the left side is at least one. Thus, $q(x)$ is a non-ronstant polynomial. Let c denote one of its (complex) rools, and let $m(\geq 1)$ denote the multiplicity of c so that $(x-c)^{m} \mid \psi(x)$. Then, we have $(x-c)^{m-1} \| \psi^{\prime}(x)$, and fom (19.4) written in the form

$$
p(x) q^{\prime}(x)=\left(p^{\prime}(x)-2 x p(x)-q(x)\right) q(x),
$$

we see that $(x \quad c) \mid p(x)$, which contradicts $G(: D(p(x), q(x))=1$, and completes the proof.
50. The sequence x_{0}, x_{1}, \ldots is defined by the conditions

$$
\begin{equation*}
x_{0}=0, \quad x_{1}=1, \quad x_{n+1}=\frac{x_{n}+n x_{n}-1}{n+1}, \quad n>1 . \tag{50.0}
\end{equation*}
$$

Dctermine

$$
L=\lim _{n \rightarrow \infty} x_{n} .
$$

Solution: The recurrence relation can be written as

$$
x_{n+1}-x_{n}=-\frac{n}{n+1}\left(x_{n}-x_{n-1}\right), \quad n \geq 1
$$

so that
(50.1) $\quad x_{n+1}-x_{n}=(-1)^{n} \frac{1}{n+1}\left(x_{1}-x_{0}\right)=\frac{(-1)^{n}}{n+1}, \quad n \geq 1$.

The equation in (50.1) trivially holds for $n=0$. Hence, for $N \geq 1$, we have

$$
\begin{aligned}
x_{N} & =\sum_{n=0}^{N-1}\left(x_{n+1}-x_{n}\right) \\
& =\sum_{n=0}^{N-1} \frac{(-1)^{n}}{n+1},
\end{aligned}
$$

and so

$$
\begin{aligned}
L=\lim _{N \rightarrow \infty} x_{N} & =\lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} \frac{(-1)^{n}}{n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
\end{aligned}
$$

that is $L=\ln 2$.
51. Prove that the only integers $N \geq 3$ with the following property: if $1<k \leq N$ and $\operatorname{G} C D(k, N)=1$ then k is prime,
are

$$
N=3,4,6,8,12,18,24,30 .
$$

Solution: It is casy to check that $3,4,6,8,12,18,24,30$ are the only integers < 121 with the given property. Suppose that $N^{\prime}>121$ is an integer with the property (51.0). Define the positive integer $u \geq 5$ by

$$
\begin{equation*}
p_{n} \leq \sqrt{ } \Lambda^{\circ}<p_{n+1} \tag{51.1}
\end{equation*}
$$

where p, denotes the k - thi prime. lirom (51.1) we ser that $p_{j}^{2} \leq N, j=$ $1,2, \ldots, n$, and so be property (51.0) we must have $p_{j} \mid N$, for $j=1,2 \ldots, \ldots$. $\Lambda s p_{1}, \ldots, p_{n}$ are distinct primes, we must have

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{n} \mid N \tag{51.2}
\end{equation*}
$$

and so, by (51.1) and (51.2), we have

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{n} \leq N<p_{n+1}^{2} \tag{51.3}
\end{equation*}
$$

By Bertiand's postulate, we have

$$
p_{n+1} \leq 2 p_{n}, \quad p_{n} \leq 2 p_{n-1},
$$

and so

$$
\begin{equation*}
p_{n-1} p_{n} \geq \frac{p_{n}^{2}}{2} \geq \frac{p_{n+1}^{2}}{8} \tag{51.1}
\end{equation*}
$$

Using the inequality (51.4) in (51.3), we obtain

$$
p_{1} p_{2} \cdots p_{n-2} p_{n+1}^{2} / 8<p_{n+1}^{2}
$$

that is $p_{1} p_{2} \cdots p_{n-2}<8$. Since $p_{1} p_{2}=6$. and $p_{1} p_{2} p_{3}=30$, we must have $n-2 \leq 2$, and $n \leq 4$, which is inupossible, proving that there are no integers $N>121$ with property (51.0).
52. Find the sum of the infinite series

$$
S=1-\frac{1}{4}+\frac{1}{6}-\frac{1}{9}+\frac{1}{11}-\frac{1}{14}+\cdots
$$

Solution: We begin by observing that

$$
\begin{aligned}
S & =\frac{1}{1}-\frac{1}{4}+\frac{1}{6}-\frac{1}{9}+\frac{1}{11} \cdots 1_{14}^{1}+\cdots \\
& =\int_{0}^{1}\left(1-x^{3}+x^{3} x^{3}+x^{111}-\cdot\right) d x \\
& =\int_{0}^{1}\left(1 x^{3}\right)\left(1, x^{5}+x^{11}, \cdots\right) d x \\
& =\int_{0}^{1} \frac{1-x^{3}}{1-x^{5}} d x \\
& =\int_{0}^{1} \frac{x^{2}+x+1}{x^{4}+x^{3}+x^{2}+x+1} d x .
\end{aligned}
$$

Now, decomposing into partial fractions, we lave

$$
\frac{x^{2}+x+1}{x^{4}+x^{3}+x^{2}+x+1} \equiv \frac{a}{x^{2}+c x+1}+\frac{b}{x^{2}+d x+1}
$$

where

$$
\begin{array}{ll}
a=\frac{5+\sqrt{5}}{10}, & b=\frac{5-\sqrt{5}}{10} \\
c-\frac{1-\sqrt{5}}{2}, & d=\frac{1+\sqrt{5}}{2} .
\end{array}
$$

Thus, we have

$$
S=a I_{c}+b I_{d},
$$

where

$$
I_{:}=\int_{0}^{1} \frac{d x}{x^{2}+c x+1} . \quad I_{4}=\int_{0}^{1} \frac{d x}{x^{2}+d x+1} .
$$

Now

$$
\int \frac{d x}{x^{2}+2 t x+1}=\frac{1}{\sqrt{1-t^{2}}} \arctan \left(\frac{x+t}{\sqrt{1-t^{2}}}\right), \quad t<1,
$$

and by the fundamental theorem of calculus, we have

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x^{2}+2 t x+1} & =\frac{1}{\sqrt{1-t^{2}}}\left(\arctan \left(\frac{1+t}{\sqrt{1-t^{2}}}\right)-\arctan \left(\frac{t}{\sqrt{1-t^{2}}}\right)\right) \\
& =\frac{1}{\sqrt{1-t^{2}}} \arctan \left(\sqrt{\frac{1-t}{1+t}}\right)
\end{aligned}
$$

Hence, taking $t=(1-\sqrt{5}) / 4$ and $t=(1-\sqrt{5}) / 4$, we obtain

$$
I_{c}=\sqrt{\frac{10-2 \sqrt{5}}{5}} \arctan \left(\frac{\sqrt{5} \overline{+2 \sqrt{5}}}{\sqrt{5}}\right)
$$

and

Nun

$$
\begin{aligned}
& \cos (\pi / 10)=(\sqrt{30+2 \sqrt{3}}) / 4, \quad \sin (\pi / 10)=(\sqrt{3}-1) / 4, \\
& \cos (3 \pi / 10):\left(\sqrt{10} \frac{2 \sqrt{5}}{5}\right) / 4, \quad \sin (3 \pi / 10)=(\sqrt{5}+1) / 1,
\end{aligned}
$$

so that

$$
\tan (\pi / 10)=\frac{\sqrt{5-2 \sqrt{ } 5}}{\sqrt{5}}, \quad \tan (3 \pi / 10)=\frac{\sqrt{5+2 \sqrt{5}}}{\sqrt{5}} .
$$

Hence, we find that

$$
I_{c}=\frac{3 \pi}{10} \sqrt{\frac{10-2 \sqrt{5}}{5}}, \quad I_{d}=\frac{\pi}{10} \sqrt{\frac{10+2}{5} \sqrt{5}}
$$

and so

$$
\begin{aligned}
S & =\frac{\pi}{100}\left(3(51 \cdot \sqrt{5}) \sqrt{\frac{10-2 \sqrt{5}}{5}}+(5-\sqrt{5}) \sqrt{\frac{10+2 \sqrt{5}}{5}}\right) \\
& =\frac{\pi}{100}(3(\sqrt{5}+1) \sqrt{10-2 \sqrt{5}}+(\sqrt{5}-1) \sqrt{10+2 \sqrt{5}}) \\
& =\frac{\pi}{100}(0 \sqrt{10+2 \sqrt{5}}+2 \sqrt{10-2 \sqrt{5}}) \\
& =\frac{\pi}{50}(3 \sqrt{10+2 \sqrt{5}}+\sqrt{10-2 \sqrt{5}}) .
\end{aligned}
$$

as required.
53. Semicircles are drawin externally to the sides of a given triangle. l'he lengths of the common tangents to these semicircles are l, m, and n. Relate the quantity

$$
\frac{l m}{n}+\frac{n n}{l}+\frac{n l}{m}
$$

to the lengthes of the sides of the triangle.

 respectively. Lat $D E ;$, $P(; I I, I$ be the common tangents to β and γ, γ and α. a and β respertively. Join $B^{\prime} D, C^{\prime} E$ and draw $C^{\prime} K$ from C^{\prime} perpendicular to $B^{\prime} \cap$. Hence, as $K\left(C^{\prime \prime} F^{\prime} I\right)$ is a rectangle, we have $K^{\prime} C^{\prime \prime}=D E=I$. let

$$
|: A B|=2 c, \quad|B C|=2 a, \quad \mid C A_{1}=2 b
$$

Then, we have

$$
\mid B^{\prime}\left(:^{\prime}\left|=a, \quad B^{\prime} K_{\mathrm{i}}=|b-c|,\right.\right.
$$

and so

$$
i k\left(C^{\prime}\right)=\sqrt{a^{2}-(b-c)^{2}}
$$

Hat is

$$
I=\sqrt{(a-b+c)(a+b-c)}
$$

Similarly, we have

$$
\left\{\begin{array}{l}
m=\mid F C i=\sqrt{(a+b-c)(-a+b+c)} \\
n=|I I J|=\sqrt{(-a+b+c)(a-b+c)}
\end{array}\right.
$$

and so

$$
\frac{m n}{l}=-a+b+c, \quad n_{m}=a-b+c, \quad \frac{l_{2}}{n}=a+b-c,
$$

giving

$$
\begin{equation*}
\frac{n 1 n}{l}+\frac{n l}{n_{2}}+\frac{l m}{n}-a+b+c, \tag{53.1}
\end{equation*}
$$

so that the left side of (53.1) is the semiperimeter of the triangle.
54. Determine all the functions $I I: \mathbf{R}^{4} \rightarrow \mathbf{R}$ faving the properties
(i) $H(1,0,0,1)=1$,
(ii) $I I(\lambda a, b, \lambda c, d)-\lambda H(a, b, c, d)$,
(iii) $H(a, b, c, d)--I I(b, a, d, c)$,
(iv) $H(a+c, b, c+f, d)=H(a, b, c, d)+H(\epsilon, b, f, d)$,
whete $a, b, c_{0} d, \cdot, f, \lambda$ are real numbers.

Solution: By (iii) we have

$$
H(1,1,0,0)=-\Pi(1,1,0,0), \quad \Pi(0,0,1,1)=\quad H(0,0,1,1),
$$

so that

$$
\begin{equation*}
\Pi(1,1,0,0)=\|(0.0,1,1)=0 \tag{54.1}
\end{equation*}
$$

and from (i) and (iii) we have

$$
\begin{equation*}
H(0,1,1,0)=-H(1,0,0,1)=-1 \tag{54.2}
\end{equation*}
$$

Hence, we obtain

$$
\begin{array}{rlrl}
I(a, b, r, d)- & I I(a, b, 0, d)+I I(0, b, c, d) & & (b y(i v)) \\
= & a I I(1, b, 0, d)+c H(0, b, 1, d) & & (b y(i i)) \\
& -a H(b, 1 . d .0)-c I(b, 0, d, 1) & & (b y(i i i)) \\
= & -a(I I(b, 1,0,0)+H(0,1, d, 0)) & & \\
& \quad-c(I I(b, 0,0,1)+H(0,0, d, 1)) & & (b y(i v)) \\
= & -a b H(1,1,0,0)-a d H(0,1,1,0) & \\
& -b c I I(1,0,0,1)-a d H(0,0,1,1) & (b y(i i)) \\
= & -a b(0)-a d(-1)-b c(1)-c d(0) & \\
= & a d-b c,
\end{array}
$$

that is

$$
I(a, b, c, d)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

55. Let z_{1}, \ldots, z_{n} be the complex roots of the equation

$$
z^{n}+u_{1} z^{n-1}+\ldots+a_{1}=0,
$$

Where $\alpha_{1} .$. . ω_{n} are $"(\geq 1)$ (complex numbers. Set

$$
A=\operatorname{mix}_{1 \leq k \leq \sum_{n}}\left|w_{k}\right|
$$

Prove that

$$
!2.1 \leq 1 \nmid, 1 . \quad 1=1 . \therefore \ldots, n .
$$

Solution: Set

$$
f(z)-z^{n}+u_{1} z^{n-1} \mid \cdots+a_{n}
$$

and suppose that one of the $z_{j}, 1 \leq j \leq \pi$, is such that $\left|z_{j}\right|>1+A$. Then we have

$$
\begin{aligned}
0=\mid f\left(z_{j}\right)_{i} & =\left|z_{j}^{z_{n}}\left(1 \left\lvert\, \frac{a_{1}}{z_{j}}+\cdots+\frac{a_{n_{n}}}{z_{j}^{n}}\right.\right)\right| \\
& =\left.\left|z_{j}\right|^{n}\right|_{1}+\frac{a_{1}}{z_{j}}+\cdots\left|\frac{u_{n}}{z_{j}^{n}}\right| \\
& \geq\left|z_{j}\right|^{n}\left(1-\frac{\left|o_{1}\right|}{\left|z_{j}\right|} \cdots \cdots-\frac{\left|a_{n}\right|}{\mid z_{j}!^{n}}\right) \\
& \geq\left|z_{j}\right|^{n}\left(1-\frac{A}{\left|z_{j}\right|}-\cdots-\frac{A}{\mid \tilde{z}_{j}^{n}}\right) \\
& \geq\left|z_{j}\right|^{n}\left(1-\frac{A}{\left|z_{j}\right|}-\cdots-\frac{A}{\left|z_{j}\right|^{n}}-\cdots\right) \\
& \therefore\left|z_{j}\right|^{n}\left(1-\frac{A}{\left|z_{j}\right|-1}\right) \\
& =\left|z_{j}\right|^{n} \frac{\left(\left|z_{j i}\right|-(A+1)\right)}{\left|z_{j}\right|-1} \\
& >0,
\end{aligned}
$$

which is impossible. Thus all the roots $z_{j}, 1 \leq j \leq \pi$, of $f(z)$ must satisfy $\left|z_{j}\right| \leq 1+A$.
56. If m and n are positive integers with m odd, determine

$$
d=(i C \cdot 1)\left(2^{m}-1,2^{\prime \prime}+1\right)
$$

Solution: Deline integers k and l by

$$
2^{\prime n}-1=k d, \quad 2^{n} \mid 1=l d l
$$

and then we obtain

$$
2^{m}=k d+1, \quad 2^{n}=l d-1
$$

and so for integers s and t we have

$$
\left\{\begin{array}{l}
2^{m: n}=(k d \mid 1)^{n}=s d+1 \\
2^{m n}=(l d-1)^{n_{2}}=t d-1, \quad \text { as } m \text { is odd } .
\end{array}\right.
$$

Hence, we have $(s-t) d--2$, and so divides 2 . But clearly d is odd, so that $d=1$.
57. If $f(r)$ is a poly nomial of degree $2 r u \mid 1$ with integral coefficients for which there are $2 m+1$ integers $k_{1}, \ldots, k_{2 n+1}$ such that

$$
\begin{equation*}
f\left(k_{1}\right)=\ldots=f\left(k_{2 m+1}\right)=1 \tag{57.0}
\end{equation*}
$$

prove that $f(x)$ is not the product of two non-constant polynomials with integral coefficients.

Solution: Suppose that $f(x)$ is the product of two non-constant polynomials with integral coofficients, say

$$
f(x)=g(x) h(x),
$$

where $r=\operatorname{deg}(g(x))$ and $s=\operatorname{deg}(h(x))$ satisfy

$$
r+s=2 m+1, \quad 1 \leq r \leq s \leq 2 m .
$$

Clearly, we have $r \leq m$. Now, for $i=1,2, \ldots, 2 m+1$, we have, from (57.0),

$$
1-f\left(k_{i}\right)-g\left(k_{i}\right) h\left(k_{i}\right)
$$

As $g\left(k_{i}\right)$ is an integer, we must have

$$
g\left(k_{i}\right)= \pm 1, \quad i=1,2, \ldots, 2 m+1
$$

Clearly, either +1 or -1 or.curs at least $m+1$ times among the values of $g\left(k_{i}\right)$, $1 \leq i \leq 2 m+1$, and we let c denote this value. Then $g(x)-c$ is a polynomial of degree at most m which vanishes for at least $m+1$ values of a. Hence the polynomial $g(x)$ - c must vanish identically, that is, $g(x)$ is a constant polynomial, which is a contradiction. Thus there is no factorization of $f(x)$ of the type supposed.
58. Prove that there do not exist integers a, b, c, d (not all zero) such that

$$
\begin{equation*}
a^{2}+5 b^{2}-2 c^{2}-2 c d-3 d^{2}=0 \tag{58.0}
\end{equation*}
$$

Solution: Suppose that (58.0) has a solution in integers a, b, c, d which are not all zero. Set

$$
\left\{\begin{array}{l}
m=G C D(a, b, c, d) \\
a_{1}=a / m 1, \quad b_{1}=b / m, \quad c_{1}=c / m, \quad d_{1}=d / m
\end{array}\right.
$$

Then clearly $\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ is a solution in integers, not all ধero, of (58.0) with

$$
G C D\left(a_{1}, b_{1}, c_{1}, d_{1}\right)=1
$$

Hence we may suppose, without loss of generality, that (a, b, c, d) is a solution of (58.0) with ($; C D(a, b, c, d)=1$. Then, from (58.0), we obtain

$$
\begin{equation*}
2\left(a^{2}+5 b^{2}\right)=(2 c+d)^{2}+5 d^{2} \tag{58.1}
\end{equation*}
$$

so that $2 u^{2}=(2 c+d)^{2} \quad(\bmod 5)$. Since 2 is a quadratic nouresidue (mod j) we must have

$$
\begin{equation*}
a=2 x+d=0 \quad(\bmod 5) . \tag{5s.2}
\end{equation*}
$$

Sel.

$$
a=5 x . \quad 2 r+d=5
$$

where X and Y are integers, so that (58.1) becomes

$$
2\left(5 X^{2}+b^{2}\right)=5 Y^{2}+d^{2}
$$

Thus we have $2 b^{2} \equiv d^{2}(\bmod 5)$. Again, as 2 is a quadratic nonresidue (mod 5), we deduce that

$$
\begin{equation*}
b \equiv d \equiv 0 \quad(\bmod 5) \tag{58.3}
\end{equation*}
$$

Appealing to (58.2) and (58.3), we see that $a \equiv b \equiv c \equiv d \equiv 0(\bmod 5)$, contradicting $G C D(a, b, c, d)=1$. Henre the only solution of (58.0) in integers is $a=b=r=d=0$.
59. Prove that there exist infinitely many positive integers which are not representable as sums of fewer than ten squares of odd natural numbers.

Solution: We show that the positive intcgers $72 k+42, k=0,1, \ldots$, cannot be expressed as sums of fewer than ten squases of odd natural numbers. For suppose that

$$
\begin{equation*}
72 k+42=x_{1}^{2}+x_{2}^{2}+\cdots+x_{s}^{2} \tag{59.1}
\end{equation*}
$$

for some $k \geq 0$, where x_{1}, \ldots, x_{s} are odd integers and $1 \leq s<10$. Now, $x_{i}^{2} \equiv 1(\bmod 8)$ for $i=1,2, \ldots, s$, and so considering (59.1) as a congruence modulo 8 , we have

$$
s \equiv 2 \quad(\bmod 8)
$$

Since $1 \leq s<10$ we must have $s=2$ and so

$$
\begin{equation*}
72 k+42=x_{1}^{2}+x_{2}^{2} \tag{59.2}
\end{equation*}
$$

Trating (59.2) is a congrunnce modulo 3, we obtain

$$
x_{1}^{2}+x_{2}^{2} \equiv 0 \quad(\bmod 3)
$$

Siuro lhe sefuare of an integer is congruent to 0 or 1 (mod 3). we must have $x_{1}=x: \% 0$ (mod 3). Finally, reducing (59.2) modulo ?, we oblain the contratiction $6=0 \quad(\mathrm{mod}!)$).
60. Evaluate the integral

$$
\begin{equation*}
I(k)=\int_{0}^{\infty} \frac{\sin t x \cos ^{k} x}{x} d x, \tag{60.0}
\end{equation*}
$$

where k is a positive intoger.

Solution: By the binomiad theorem, we have

$$
\begin{equation*}
\left(e^{2 i x}+1\right)^{k}=\sum_{r=0}^{k}\binom{k}{r} e^{2 r i x} . \tag{60.1}
\end{equation*}
$$

As

$$
\left(e^{2 i r}+1\right)^{k}=\epsilon^{k i x}\left(e^{i z} 1 \cdot \epsilon^{-i r}\right)^{k}=(\cos k x 1 \cdot i \sin k x) 2^{k} \cos ^{k} r,
$$

the innginary part of $\left(e^{2 i x}+1\right)^{k}$ is $2^{k} \sin k x \cos ^{k} r$. Equating innaginary pats in (60.1), we obtain

$$
2^{k} \sin k x \cos ^{k} x=\sum_{r=0}^{k}\binom{k}{r} \sin 2 r x=\sum_{r=1}^{k}\binom{k}{r} \sin 2 r x .
$$

Thus, using $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$, we have

$$
\begin{aligned}
& =\frac{\pi}{2^{k+1}} \sum_{r=1}^{k}\binom{k}{1} \\
& =2^{\pi}\left(2^{k}-1\right) \\
& =\frac{\pi}{2}\left(1 \cdot \frac{1}{2^{i}}\right),
\end{aligned}
$$

as required.
61. Prove that

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

is an integer for ${ }^{\prime \prime}-1,2,3, \ldots$.

Solution: for $n=1,2, \ldots$, we have

$$
\begin{aligned}
\frac{1}{n+1}\binom{2 n}{n}= & \begin{array}{c}
2 n! \\
(n!)^{2}
\end{array} \frac{1}{n \cdot 1 \cdot 1} \\
= & \begin{array}{c}
2 n!((2 n \cdot+\cdot 2)-(2 n \mid 1)) \\
(n!)^{2}
\end{array} \\
& \frac{2 n!}{(n!)^{2}}\left(2 \cdots \frac{2 n!1}{n!1}\right) \\
= & 2 \frac{2 n!}{(n!)^{2}}-\frac{(2 n \mid 1)!}{n!(n \mid 1)!} \\
= & 2\binom{2 n}{n}-\binom{2 n \mid 1}{n} .
\end{aligned}
$$

As $\binom{2 n}{n}$ and $\binom{2 n+1}{n}$ are both integers, this shows that $\frac{1}{n+1}\binom{2 r}{n}$ is an integer, as was required to be proved.

Second solution: (due to S. Flnitsky) For $n=1,2, \ldots$ we have

$$
\frac{1}{n+1}\binom{2 n}{n}=\begin{gathered}
2 n! \\
(n!)^{2} \\
\frac{1}{n+1}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{2 n!}{n!(n+1)!} \\
& =\frac{2 n!}{n!(n+1)!}((n+1)-n) \\
& =\frac{2 n!}{(n!)^{2}}-\left(n \cdots \frac{2 n!}{1)!(n+1)!}\right. \\
& =\binom{2 n}{n}-\binom{2 n}{n-1}
\end{aligned}
$$

Is $\binom{2 "}{"}$ and $\binom{\because n}{n-1}$ are both integets, this shows that $\begin{gathered}1 \\ n+i\end{gathered}\binom{\dot{\prime \prime \prime}}{n}$ is an integer.
62. Find the sum of the inlinite scries

$$
S=\sum_{n=0}^{\infty} \frac{2^{n}}{a^{2^{n}}+1},
$$

where $a>1$.

Solution: We have for $a>1$

$$
\begin{aligned}
\frac{2^{n}}{a^{2^{n}}+1} & =\frac{2^{n}\left(a^{2^{n}}-1\right)}{a^{2^{n+1}}-1} \\
& =\frac{2^{n}\left(a^{2^{2}}+1\right)-2^{n+1}}{a^{a^{n+1}}-1} \\
& =\frac{2^{n}}{a^{2^{n}}-1}-\frac{2^{n+1}}{a^{2^{n+1}}-1}
\end{aligned}
$$

so that

$$
S=\sum_{n=0}^{\infty}\left(\frac{2^{n}}{a^{2^{2}}-1}-\frac{2^{n+1}}{a^{2 n+1}-1}\right)=\frac{1}{a-1} .
$$

63. Iet k be an integer. Prove that the formal power series

$$
\sqrt{1+k x}=1+a_{1} x+a_{2} x^{2}+\cdots
$$

has integral cofficients if and only if $k \geqslant 0(\bmod 4)$.

Solution: If $k \equiv 1(\bmod 2)$ then $a_{1}=k / 2$ is not an integer and if $f=$ 2 (mod 4) then $a_{2}-k^{2} / \mathrm{K}$ is not an integar. When $t:=$ 0 (monl 1), we have for $n=1,2, \ldots$

$$
\begin{aligned}
& \text { I", } \quad\binom{1 / 2}{n} k
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n-1} \frac{1.3 .5 \cdots(2 n-3)}{2^{n \prime n} n} k^{n} \\
& =(-1)^{n-1} \frac{(2 n-2)!}{2^{2 n-1} n!(n-1)!}!^{n} \\
& =2(1)^{n-1} \frac{1}{n}\binom{2 n-2}{n-1}\binom{k}{i}^{n} \text {, }
\end{aligned}
$$

which is an integer since $k / 4$ is an integer and $\frac{1}{n}\binom{2 n-2}{n-1}$ is an integer by Problem 61.
64. Let m be a positive integer. Fvaluate the determinant of the $m \times m$ matrix M_{n} whose $(i, j) \cdot t h$ entry is $G(, D(i, j)$.

Solution: Let C_{1}, \ldots, C_{m} denote the columns of the malrix M_{m}. We define N_{m} to the matrix whose columns D_{1}, \ldots, D_{m} are given by

$$
\left\{\begin{array}{l}
D_{i}=\left(C_{i}, \quad i=1,2, \ldots, m-1\right. \\
D_{m}=\sum_{d}(-1)^{\tau(d)} C_{m / d}
\end{array}\right.
$$

where the sum is taken over those squarefree integers d which divide m. Clearly, as $D_{m}=C_{n}+J$, where J is a linear combination of the $C_{i}, 1 \leq i \leq$ $m-1$, we have

$$
\operatorname{det} M_{m}=\operatorname{det} N_{m} .
$$

For $1 \leq i \leq m$, the cutry in the i - th row of l_{m} is (writing (x, i) for ($C(C \cdot D(i, i)$)

$$
\sum_{l_{m+\prime}}(-1)^{\tau(\cdot))}(i, m / d)=\prod_{p^{\sim} \| m} \sum_{d \mid r^{\prime \cdot}}(-1)^{\tau(d)}\left(i, p^{0} / d\right)
$$

,inguarefiee
-I srinare:Iner:

$= \begin{cases}\phi(m) & , \text { if } i=m, \\ 0 & \text {, if } 1 \leq i \leq m-1 .\end{cases}$
Hence, expranding the deteminant of N_{m} by its m - 1 h colemn, we obtain

$$
\text { det } N_{n}=\dot{s}(m) \text { det } N_{r n-1}
$$

and so

$$
\operatorname{det} M_{n_{n}}=\dot{s}(m) \text { det } M_{m-1} \text {. }
$$

Thus. as det $M_{1}=1=\phi(1)$, we find that

$$
\operatorname{det} M_{n}=p(m) s(m-1) \cdots \varphi(2) \varrho(1) .
$$

65. Let l and m be positive integers with l odd and for which there are integers x and y with

$$
\left\{\begin{array}{l}
1=x^{2}+y^{2} \\
m=x^{2}+8 x y+17 y^{2}
\end{array}\right.
$$

Prove that there do not exist integers u and v with

$$
\left\{\begin{array}{l}
1-u^{2}+v^{2} \tag{0.5.0}\\
m-5 u^{2}+16 u v+13 r^{2}
\end{array}\right.
$$

Solution: Suppose there exist int egers u and u such that (65.0 ; holds. Theu, we have

$$
m=5 l+8\left(2 u v+v^{2}\right),
$$

so that $m=5 /(\bmod R$). Hence, we must have

$$
x^{2}+x x y+17 y^{2}-5 x^{2}+5 y^{2}(\bmod S)
$$

libat is

$$
4 x^{2}+4 y^{2}=0 \quad(\bmod x)
$$

and so

$$
l=x^{2}+y^{2} \equiv 0 \quad(\bmod 2)
$$

which contradicts the condition that l is odd.
66. l.et

$$
a_{n}=1-\frac{1}{2}+\frac{1}{3}-\ldots+\frac{(-1)^{n-1}}{n}-\ln 2 .
$$

Piove that $\sum_{n=1}^{\infty} a_{n}$ converges and determine its sum.

Solution: We have

$$
\begin{aligned}
a_{n} & =\int_{0}^{1}\left(1-x+x^{2}-\cdots+(-1)^{n-1} x^{n-1}\right) d x-\int_{0}^{1}-\frac{d x}{1+x} \\
& =\int_{0}^{1}\left(\frac{1+(-1)^{n-1} x^{n}}{1+x}\right) d x-\int_{0}^{1} \frac{d x}{1+x} \\
& =\int_{0}^{1} \frac{(-1)^{n-1} x^{n}}{1+x} d x .
\end{aligned}
$$

flence, for any integer $N \geq 1$, we have

$$
\sum_{n=1}^{N} a_{n}=\sum_{n=1}^{N} \int_{0}^{1} \frac{(-1)^{n-1} x^{n}}{1+x} d x
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{1}{1+x} \sum_{n=1}^{N}(-1)^{r-1} x^{n} d x \\
& =\int_{0}^{1} \frac{\left(x+(-1)^{N+1} x^{N+1}\right)}{(1+x)^{2}} d x \\
& =\int_{0}^{1} \frac{x}{(1+x)^{2}} d x+(-1)^{N+1} \int_{0}^{1} \frac{x^{N+1}}{(1+x)^{2}} d x
\end{aligned}
$$

alld so

$$
\begin{aligned}
\left|\sum_{n=1}^{N} a_{n}-\int_{0}^{1} \frac{x}{(1+x)^{2}} d x\right|^{\prime} & =\int_{0}^{1} \frac{x^{n+1}}{(1+x)^{2}} d x \\
& \leq \int_{0}^{1} x^{N+1} d x \\
& -\frac{1}{N+2}
\end{aligned}
$$

Letting $N \rightarrow \infty$ we see that $\sum_{n=1}^{\infty} a_{n}$ converges, and has sum

$$
\int_{0}^{1} \frac{x}{(1+x)^{2}} d x=\int_{0}^{1}\left(\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right) d x=\ln 2-1 / 2 .
$$

67. Let $A=\left\{a_{i} \mid 0 \leq i \leq 6\right\}$ be a sequence of seven integers satisfying

$$
0=a_{0} \leq a_{1} \leq \ldots \leq a_{6} \leq 6 .
$$

lor $i=0,1, \ldots, 6$ let

$$
N_{i}=\text { number of } a_{j}(0 \leq j \leq 6) \text { such that } a_{j}=i
$$

Determine all sequences A such that

$$
\begin{equation*}
N_{i}=a_{6-i}, \quad i=0,1, \ldots, 6 \tag{67.0}
\end{equation*}
$$

Solution: Let A be a sequence of the required type satisfying (67.0) and let k denote the number of $\%$ eros in A. As $a_{0}=0$ we have $k \geq 1$, and as $k=N_{0}=a_{6}$ we have $k \leq 6$. If $k=6$ then it follows that 1 - $\{0,0,0,0,0,0,6\}$, contradicting $N_{6}=a_{0}=0$. Hence, we have $1 \leq k=a_{6} \leq 5$, and so

$$
\begin{equation*}
N_{k} \geq 1, \quad N_{k+1}=\cdots=N_{c}=0 . \tag{67.1}
\end{equation*}
$$

Thus, by (67.0) and (67.1), we obtain
(67.2)
and so

$$
k=N_{0}=6-(k+1)+1,
$$

that is $k=3$. 'This proves that A is of the form

$$
\begin{equation*}
A=\left\{0,0,0, a_{3}, a_{4}, a_{5}, 3\right\}, \tag{67.3}
\end{equation*}
$$

where

$$
\begin{equation*}
1 \leq a_{3} \leq a_{4} \leq a_{5} \leq 3 . \tag{67.4}
\end{equation*}
$$

Clearly, we have $0 \leq N_{1} \leq 3$. If $N_{1}=0$ then, by (67.0), we have the contradiction $a_{5}=N_{1}=0$. If $N_{1}=1$ then, by (67.0), we have $a_{5}=1$, and so (67.1) implies that $a_{3}=a_{4}=a_{5}=1$, giving the contradiction $N_{1}=3$. If $N_{1}=3$ then $a_{3}=a_{4}=a_{5}=1$ and so, by (67.0), we obtain the contradiction $a_{5}=N_{1}=3$. Hence, we see that $N_{1}=2$ so that $a_{3}=a_{4}=1$ and $a_{5}=N_{1}=2$. The resulting sequence

$$
A=\{0,0,0,1,1,2,3\}
$$

satisfies (67.0), and the proof shows that it is the only such sequence to do so.
68. I.et G be a finite group with identity e. If G contains clements g and h such that

$$
\begin{equation*}
g^{5}=\epsilon, \quad g h g^{-1}=h^{2}, \tag{68.0}
\end{equation*}
$$

determine the order of h.

Solution: if $h=e$ then the order of h is 1 . Thus we may suppose that $h \neq 1$. We have

$$
\begin{aligned}
& g^{2} h g g^{-2}=g\left(!/ h g^{-1}\right) g^{-1}=g h^{2} g^{-1}=\left(g / g^{-1}\right)^{2}=h^{4}, \\
& g^{3} h!!^{-3}=!\left(!!^{2}!!!^{-2}\right) m^{-1} \cdot q h^{4}!!^{1} \quad\left(\eta h!!^{-1}\right)^{1} \cdot h^{3} .
\end{aligned}
$$

and 30 , as $g^{5}=6$, we obtain $h=h^{32}$, rhat is $h^{31}=r$. Thus the order of h is 31 as $h \neq e$ and 31 is prime.
69. Let a and b be positive integers such that

$$
C C D(a, b)=1, \quad a \not \equiv b(\bmod 2) .
$$

If the set S lias the following two propertios:
(i) $a, b \in S$,
(ii) $x, y,=\in S$ implies $x+y+z \in S$,
prove that every integer $>2 a b$ belongs to S.

Solution: lest N be an integer $>2 a b$. As $G C D(a, b)=1$ there exist integers k and l such that

$$
a k+b l=N
$$

l'urthermore, as

$$
\frac{l}{a}-\left(\frac{-k}{b}\right)-\frac{a k+b l}{a b}=\frac{N}{a l}>2,
$$

there exists an integer t such that

$$
\frac{-k}{b}<t<t+1 \leq \frac{l}{a}
$$

Define integers u and r by

$$
u=k+b t . \quad u=l-a l,
$$

and integers x and y by

$$
\left\{\begin{array}{lll}
u, & y-v, & \text { if } u+v=1(\bmod 2) \\
r-u+b, & y-n-u & \text { if } u+v=0(\bmod 2)
\end{array}\right.
$$

It is casy to check that

$$
x-x a+y b, \quad x>0, \quad y \geq 0 . \quad x+y=1(\bmod 2) .
$$

We show below that S contains all integers of the form

$$
x a+y b, \quad x>0, \quad y \geq 0, \quad x+y \equiv 1(\bmod 2),
$$

completing the proof that $N \in S$.
For m an ord positive integer, let P_{m} be the asserrion that $x a+y b \in S$ for all integers x and y satisfying

$$
x \geq 0 . \quad y \geq 0, \quad x+y=1(\bmod 2), \quad x+y \cdots m
$$

Clearly P_{1} is true as $a, b \in S$ by (i). Assume that P_{m} is true and consider an integer of the form $Y^{\prime} a+Y^{\prime} b$, where X and Y are integers with

$$
X \geq 0, \quad Y \geq 0, \quad X+Y \equiv 1(\bmod 2), \quad X+Y=m+2 .
$$

$\Lambda s m+2 \geq 3$ at least one of X and γ is ≥ 2. Then, writing $X a+Y b$ in the form

$$
\begin{cases}((X-2) a+Y b)+a+a & , \text { if } X>2, \\ (X a+(Y-2) b)+b+b, & \text { if } Y \geq 2,\end{cases}
$$

we see that $X a+Y b \in S$, by the inductive bypothesis, and so P_{m+2} is true. Hence, by the principle of mathematical induction, P_{m} is true for all odd positive integers m.
70. Prove that every integer can be expressed in the form $x^{2}+y^{2} 5 z^{2}$, where x, y, z ase integers.

Solution: (due to l.. Smith) If m is cven, say $m=2 n$, then

$$
m=(n-2)^{2}+(2 n-1)^{2}-5(n-1)^{2}
$$

whereas if m in odd, say $m:-2 n+1$, then

$$
m=(n+1)^{2}+(2 n)^{2}-5 n^{2} .
$$

71. Livaluate the sum of the infinite series

$$
-\frac{\ln 2}{2}-\frac{\ln 3}{3}+\frac{\ln 4}{4}-\frac{\ln 5}{5}+\ldots
$$

Solution: For $x>1$ we have

$$
\ln x=\int_{1}^{x} \frac{d t}{t}<\int_{1}^{x} \frac{d t}{\sqrt{t}}=2 \sqrt{x}-2<2 \sqrt{x}
$$

and

$$
-1 / 2 \leq x-[x]-1 / 2<1 / 2,
$$

so that for any $a \geq 1$ we have

$$
\begin{aligned}
\int_{1}^{n}\left|\frac{(\ln x-1)}{x^{2}}(x-|x|-1 / 2)\right| d x & <\int_{1}^{a} \frac{(2 \sqrt{x}+1)}{x^{2}} \frac{1}{2} d x \\
& <\frac{3}{2} \int_{1}^{a} \frac{d x}{x^{3 / 2}} \\
& =\frac{3}{2}\left(2-\frac{2}{\sqrt{a}}\right) \\
& <3 .
\end{aligned}
$$

Thus, the integral

$$
I=\int_{1}^{\infty} \frac{(\ln : x-1)}{x^{2}}(x-[x]-1 / 2) d x
$$

is absolutely convergent.
Now, one form of the Euler-Maclaurin summation formula asserts that if $f(x)$ has a continuous derivative on $[1, n]$, where $n(>1)$ is a positive integer, then

$$
\sum_{k-1}^{n} f(k)=\frac{1}{2}(f(n)+f(1))+\int_{1}^{n} f(x) d x+\int_{1}^{n} f^{\prime}(x)(x-\{x\} \cdots 1 / 2\} d x .
$$

Taking $f(x)-\ln : / x$, we obtain

$$
\left.\sum_{k=1}^{n} \frac{\ln k}{k}-\frac{\ln n}{2 n}+\frac{\ln ^{2} n}{2}+\int_{1}^{n}(1) \cdot \ln , \ldots\right)(x-[x]-1 / 2) d x .
$$

Setting

$$
E(n)=\sum_{k=1}^{n} \frac{\ln _{1} k}{k}-\frac{\ln ^{2} n}{2},
$$

and letting $n \rightarrow \infty$, we see that $\lim _{n \rightarrow \infty} E(n)$ exists and has the value $-I$. lhus

$$
\lim _{n \rightarrow \infty}(E(2 n)-\Gamma(n))
$$

exists and has the value 0 . Next, we have the following

$$
\begin{aligned}
\sum_{r=2}^{2 n}(-1)^{r} \frac{\ln r}{r}- & \frac{\ln 2}{2}-\ln 3 \\
3 & +\frac{\ln 4}{4}-\cdots+\frac{\ln 2 n}{2 n} \\
= & \left(\frac{\ln 2}{1}+\frac{\ln 4}{2}+\cdots+\frac{\ln 2 n}{n}\right)-\left(\frac{\ln 2}{2}+\frac{\ln 3}{3}+\cdots+\frac{\ln 2 n}{2 n}\right) \\
= & \frac{(\ln 2+\ln 1)}{1}+\frac{(\ln 2+\ln 2)}{2}+\cdots+\frac{(\ln 2+\ln n)}{n}-\sum_{k=1}^{2 n} \frac{\ln k}{k} \\
= & \ln 2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)+\sum_{k=1}^{n} \frac{\ln k}{k}-\sum_{k=1}^{2 \pi} \frac{\ln k}{k} \\
= & \ln 2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)+\left(E(n)+\frac{\ln ^{2} n}{2}\right) \\
& -\left(F(2 n)+\frac{\ln ^{2} 2 n}{2}\right)
\end{aligned}
$$

$$
=\ln 2\left(1+\frac{1}{2}+\cdot+\frac{1}{n}-\ln n\right)-\frac{\ln ^{2} 2}{2}+(E(n)-E(2 n)) .
$$

Letting $n \rightarrow \infty$, and remembering that

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)=\gamma
$$

where $7 \approx 0.57721$ is Buler's collstant. wiontain

$$
\sum_{r=2}^{\Sigma}(-1)^{r \mid n} \frac{11}{r}=\gamma \ln 2 \quad \frac{1}{2} \ln \geq 2 .
$$

72. Determine constant.s a, b and c such that

$$
\sqrt{n}=\sum_{k=0}^{n-1} \sqrt[3]{\sqrt{a} k^{3}+b k^{2}+c k+\sqrt{1-\sqrt{a k^{3}+b k^{2}+c k}}, ~}
$$

for $n=1,2, \ldots$.

Solution: For $k=0,1, \ldots$, we have

$$
\begin{aligned}
(\sqrt{k+1}-\sqrt{k})^{3} & =(k+1) \sqrt{k+1}-3(k+1) \sqrt{k}+3 k \sqrt{k+1}-k \sqrt{k} \\
& =(4 k+1) \sqrt{k}+1 \\
& =\sqrt{(4 k+1)^{2}(k+1)}-\sqrt{(4 k+3)^{2} k} \\
& =\sqrt{16 k^{3}+24 k^{2}+9 k+1}-\sqrt{16 k^{3}+24 k^{2}+9 k}
\end{aligned}
$$

so that

$$
\sqrt[4]{\sqrt{16 k^{3}+24 k^{2}}+9 k+1-\sqrt{16 k^{3}}}+2 \overline{2 k^{2}+9 k}=\sqrt{k+1}-\sqrt{k},
$$

and thus

$$
\begin{array}{r}
\sum_{k=0}^{n-1} \sqrt[3]{\sqrt{16 k^{3}+21 k^{2}+9 k+1}-\sqrt{ } 16 k^{3}+24 k^{2}+9 k} \\
-\sum_{k:=1}^{n-1}(\sqrt{k}+1-\sqrt{k})=\sqrt{n}
\end{array}
$$

Hence we may take $a=16, b=24$, and $c=9$.
73. led n he a posilive intoger and π, b intereres such that

$$
(:(: 1)(a, b, n)=1
$$

Prove that there exist integers a_{1}, b_{1} with

$$
a_{1} \equiv a(\bmod n), \quad b_{1} \equiv b(\bmod n), \quad\left(; C D\left(a_{1}, b_{1}\right)=1 .\right.
$$

Solution: We choose a_{1} to be any nonzero integer such that

$$
\begin{equation*}
a_{1} \equiv n \quad(\bmod n) . \tag{73.1}
\end{equation*}
$$

Then we set

$$
b_{1}=b+r n,
$$

wherer r is the product of those primes which divide a_{1} but which do not divide either b or n. If there are no such primes then $r=I$. Clearly we have

$$
b_{1}=\| \quad(\bmod n)
$$

Wic now show that

$$
(C 1)\left(a_{1}, b_{1}\right)=1 .
$$

Suppose that $G C \cdot I)\left(a_{1}, b_{1}\right)>1$. Then there exists a prime q which divides both a_{1} and b_{1}. We consider threc cases ascording as
(i) y divides b,
(ii) q does not divide b but divides n,
(iii) q divides neither b nor n.

Case (i): As $q|b, q| b_{1}$ and $b_{1}-b=r n$, we have $q \mid r n$. Now, by (73.1),

$$
G C D\left(a_{1}, b, n\right)=C C D(a, b, n)=1 .
$$

Since $q \mid a_{1}$ and $q \mid b$ we see that q does not divide n. Thus we have $q \mid r$, contradicting the definition of r.
Case (ii): This rase clearly cannot orcur as $b_{1}=1+r n$, yet q divides both b_{1} and n, but doses not divide b.
Case (iii): As $q \mid a_{1}$ but does not divide h or n, we have $\boldsymbol{f} \mid r$. Since. $\eta \mid b_{1}$, $q \mid r$ and $b_{1}=b+r n$, we must have $q \mid b$, which is inmensible.

This completes the solution.
74. For $n=1,2, \ldots$ let $s(n)$ denote the sum of the digits of 2^{n}. Thus, for example, as $2^{8}=256$ we have $s(8)=2+5+6-13$. Determine all positive integers n such that

$$
\begin{equation*}
s(n)=s(n+1) . \tag{74.0}
\end{equation*}
$$

Solution: Write

$$
2^{n}=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\cdots+a_{1} 10+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{m}$ are integers such that

$$
1 \leq a_{m} \leq 9 ; \quad 0 \leq a_{k} \leq 9, \quad 0 \leq k \leq m-1,
$$

then

$$
2^{n} \equiv a_{m 1}+a_{m-1}+\cdots+a_{1}+a_{0} \equiv s(n) \quad(\bmod 3)
$$

and so

$$
s(n+1) \equiv 2^{n+1} \equiv 2 \cdot 2^{n} \equiv 2 s(n) \quad(\bmod 3)
$$

Hence, if $s(n+1)=s(n)$, we must have

$$
s(n) \equiv 0 \quad(\bmod 3), \quad 2^{n} \equiv 0 \quad(\bmod 3)
$$

which is impossible. Thus there are no positive integers satisfying (74.0).
75. Evaluate the sum of the infinite series

$$
S=\sum_{\substack{n, n=1 \\ \operatorname{sc} \cdot(n, n, n)=1}}^{\infty} \frac{1}{m n(n t+n)} .
$$

Solution: We have

$$
\begin{aligned}
\sum_{n, n=1}^{\infty} \frac{1}{m n(m+n)} & =\sum_{m, n=1}^{\infty} \frac{1}{m n} \int_{0}^{1} x^{m+n-1} d x \\
& =\int_{0}^{1}\left(\sum_{m=1}^{\infty} \frac{x^{m}}{m}\right)\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) \frac{d x}{x} \\
& =\int_{0}^{1} \frac{n^{2}(1-x)}{x} d x \\
& =\int_{0}^{\infty} \frac{u^{2} e^{-u}}{\left(1-e^{-u}\right)} d u \quad\left(x=1-e^{-u}\right) \\
& =\int_{0}^{\infty} n^{2} \sum_{n=1}^{\infty} e^{-n u} d u \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} u^{2} e^{-n u} d u \\
& =\sum_{n=1}^{\infty} \frac{2}{n^{3}} \\
& =2 \sum_{n=1}^{\infty} \frac{1}{n^{3}} .
\end{aligned}
$$

On the other hand, we have

$$
\sum_{m, n=1}^{\infty} \frac{1}{m n(m+n)}=\sum_{d=1}^{\infty} \sum_{\substack{n:, n=1 \\ \operatorname{GCD}(m, n)=d}}^{\infty} \frac{1}{n \iota n(m+n)}
$$

$$
\begin{aligned}
& =\sum_{d=1}^{\infty \times} \sum_{q, r=1}^{\infty} \frac{1}{\pi^{3} \operatorname{qr}(q+r)} \\
& (B C 1)(4, r)-1 \\
& =\left(\sum_{t=1}^{\infty} d^{3}\right) \quad \sum_{q, r=1}^{\infty} \quad \frac{1}{\operatorname{ar}(q+r)}
\end{aligned}
$$

$$
\begin{aligned}
& -s\left(\sum_{d=1}^{\infty} \frac{1}{d}\right)
\end{aligned}
$$

so that $S=2$.
76. A cross-country racer runs a 10 -mile tace in 50 minutes. Prove that somewhere along the course the racer ran 2 miles in exactly 10 minutes.

Solution: For $0<x \leq 8$ let $T(x)$ denote the time (in minutes) taken by the racer to metween points x and $x+2$ miles along the course. The function $T(s)$ in continuous on $[0,8]$ and lias the property

$$
\begin{equation*}
T(0)+T(2)+T(4)+T(6)+T(8)=50 . \tag{76.1}
\end{equation*}
$$

The cquation (76.1) shows that not all of the values $T(0), T(2), T(4), T(6)$ and $T(8)$ are greater than 10 nor are all of them less than 10 . Hence, there exist integers r and s with $0 \leq r, s \leq 8$ such that

$$
T(r) \leq 10 \leq T(s) .
$$

Then, by the intermodiate value theoren, there exists a value $y, r \leq!\leq s$, such that $T(y)=10$, and this proves the assertion.
77. Let ΛB be a line segenent with midpoint (). Let R be a point on $A B$ between A and O. Three semicircles are constructed on the same side of $A B$ as follows: S_{1} is the semicircle with centre O and radius $|O A|=\mid O B_{1} ; S_{2}$ is the senuicircle with centre R and radius $|A R|$, uceting $R B$ at $\left(': S_{;}\right.$, is the
semicircle with centre S (the midpoint of $C B$) and radins $|C S|=|S B|$. The conmon tangent to S_{2} and S_{3} touches S_{2} at P and S_{3} at Q. The perpendicular to $A B$ through C^{\prime} ineets S_{1} at D. Prove that $P C Q D$ is a rectangle.

Solution: Wr give a solution using coordinate geometry. The coordinate svstom is chessern so that.

$$
.1-\{-1,0) . \quad 0 \cdots(0,0\}, \quad B \cdots(1.0)
$$

'Then we have $K=(-a, 0)$, where $0<\pi<1$, and hence

$$
c=(1-2 n, 0), \quad S-(1-n, 0)
$$

The equations of the thres semicireles are given as follows:

$$
\begin{aligned}
& S_{1}: x^{2}+1^{2}=1 \\
& S_{2}:(x+a)^{2}+y^{2}=(1-a)^{2}, \\
& S_{3}:(x+a-1)^{2}+y^{2}=a^{2}
\end{aligned},
$$

The perpendicular to $A B$ through C meets S_{1} at

$$
D=\left(1-2 a, 2 \sqrt{a-a^{2}}\right) .
$$

The equation of the common tangent to S_{2} and S_{3} is

$$
x(1-2 a)+2 y \sqrt{a-a^{2}}=1-2 a+2 a^{2},
$$

and this line touches S_{2} at the point

$$
P=\left(2 a^{2}-4 a+1,2(1-a) \sqrt{a-a^{2}}\right)
$$

and S_{3} at the point

$$
Q=\left(1-2 a^{2}, 2 a \sqrt{a-n^{2}}\right) .
$$

The slope of $P D$ is

$$
\frac{2 a \sqrt{ } a-a^{2}}{2 a-2 a^{2}}=\sqrt{\frac{a}{1-a}}
$$

and the slope of $P C^{\prime}$ is

$$
\frac{2(1-a) \sqrt{a-a^{2}}}{2 a^{2}-2 a}=-\sqrt{\frac{1-a}{a}} .
$$

The product of these slopes is -1 , showing that $P($ and $P I$ are perpendicular. that is $/\left(L^{\prime} 1^{\prime}\right)=90^{\circ}$. Similarly,
so that I'D()(' is: a rectangoln.
78. Determine the inverse of the $n \times n$ matrix

$$
S=\left[\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \tag{78.0}\\
1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 0
\end{array}\right]
$$

where $n \geq 2$.

Solution: Set.

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right], \quad i=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

so that

$$
S=U-I, \quad U^{2}=n U .
$$

linr any real uumber c., we have

$$
\begin{aligned}
(U-I)\left(c U^{U}-I\right) & =c V^{2}-(c+1) U^{i}+I \\
& =(c n-(c+1)) U^{U}+I .
\end{aligned}
$$

Thus, if we choose $s n-(r+1)=0$, that is $r=1 /(n-1)$, we have

$$
\begin{aligned}
S^{-1}=(U-I)^{-1} & =\frac{1}{n-1} I^{-}-I \\
& =\left[\begin{array}{cccc}
2=n & -1 \\
n-1 & \frac{n-1}{n-1} & \cdots & \frac{1}{n-1} \\
n-1 & \frac{2}{n-1} & \cdots & n \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & 1 \\
n-1 & n-1 & \cdots & 2 \\
n-1
\end{array}\right] .
\end{aligned}
$$

79. Livaluate the sum

$$
\begin{equation*}
S(n)-\sum_{k=0}^{n \cdots 1}(-1)^{k} \cos ^{n}(k \pi / n) \tag{79.0}
\end{equation*}
$$

where $"$ is a positive meger.

Solution: Set $\omega=\exp (\pi i / n)$ so that

$$
S(n)=\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{\omega^{k}+\omega^{-k}}{2}\right)^{n}
$$

Hence, by the binomial theorem, we obtain

$$
\begin{aligned}
S(n) & =\frac{1}{2^{n}} \sum_{k=0}^{n-1} \omega^{k n} \sum_{l=0}^{n}\binom{n}{l} \dot{u}^{k(n-2 l)} \\
& -\frac{1}{2^{n}} \sum_{l=0}^{n}\binom{n}{l} \sum_{k=0}^{n-1} \omega^{k \cdot(2 n-2 l)} \\
& =\frac{1}{2^{n}}\left(\binom{n}{0} n+\binom{n}{n} n\right),
\end{aligned}
$$

that is $S(n)=n / 2^{n-1}$.
80. Determine 2×2 matrices B and C with integral entrics such that

$$
\left[\begin{array}{rr}
-1 & 1 \tag{80.0}\\
0 & -2
\end{array}\right]=B^{3}+C^{3} .
$$

Solution: L.el

$$
1=\left[\begin{array}{rr}
-1 & 1 \\
0 & 2
\end{array}\right]
$$

so that

$$
A^{2}=\left[\begin{array}{rr}
1 & -3 \\
0 & 4
\end{array}\right]
$$

and thus

$$
A^{2}+3 A+2 l=0
$$

giving

$$
A^{3}+3 A^{2}+2 A-0
$$

Hence, we have

$$
(A+I)^{3}=A^{3}+3 A^{2}+3 A+I=A+I
$$

aud so

$$
A=(A+l)^{3}-l
$$

and we may take

$$
B=A+I=\left[\begin{array}{rr}
0 & 1 \\
0 & -1
\end{array}\right], \quad C=-I=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

81. Find two non-congruent similar triangles with sides of integral length having the lengths of two sides of one triangle equal to the lengths of two sides of the other.

Solution: Tet the two triangles be $A B C$: and $D E F$. We suppose that

$$
\begin{aligned}
& |A B|-a, \quad\left|A C^{\prime}=b, \quad\right| B C \mid=c, \\
& |A E|=b, \quad|D C|=c, \quad\left|C^{\prime}\right|=d \mid=d,
\end{aligned}
$$

and that
(31.1)

$$
a<b
$$

As $\triangle A B C^{\prime}$ and $A D P F^{\prime}$ are similar, we have

$$
\frac{a}{b}=\frac{b}{c}=\frac{c}{d},
$$

so that

$$
c=b^{2} / a, \quad d=b^{3} / a^{2} .
$$

Prom (81.1) we have

$$
\begin{equation*}
1<b / a, \tag{81.3}
\end{equation*}
$$

and from (81.2) and the inequality $c<a+b$ we have

$$
\frac{b^{2}}{a}<a+b
$$

so that

$$
\frac{b}{a}<\frac{1+\sqrt{5}}{2} \approx 1.618 .
$$

To satisfy (81.3) and (81.4) we choose $b / a=3 / 2$. say $a=2 t$ and $b=3 t$. Then, by (81.2), we have

$$
c=\frac{9 t}{2}, \quad d-\frac{27 t}{4} .
$$

' o e ensure that c and d are integers we choose $t=1$ so that

$$
a=8 . \quad b=12, \quad c=18, \quad d=27
$$

The triangles with sides $8,12,18$ and $12,18,27$ mespectively, meet the requirements of the problem.
82. L.et a, b, c be three real numbers with $a<b<r$. The: function $f(x)$ is continuous on $\left[a, c\right.$] and differentiable on (a, c). The derivative $f^{\prime}(x)$ is strictly increasing on (a,c). Prove that

$$
\begin{equation*}
(c \quad b) f(a)+(b-a) f(c)>(r-a) f(b) . \tag{82.0}
\end{equation*}
$$

Solution: By the mean-value theorem there exists a real number u such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(u), \quad a<u<b
$$

and a real number v such that

$$
\frac{f(c)-f(b)}{c-b}=f^{\prime}(v), \quad b<v<c
$$

As $a<u<v<c$ and f^{\prime} is increasing on (a, c), we have

$$
f^{\prime}(u)<f^{\prime}(v),
$$

and so

$$
\frac{f(b)-f(a)}{b-a}<\frac{f(c)-f(b)}{c-b}
$$

Rearranging this inequality gives (82.0).
83. The sequence $\left\{a_{m} ; m=1,2, \ldots\right\}$ is such that $a_{m}>a_{m+1}>$ $0, m=1,2, \ldots$, and $\sum_{m=1}^{\infty} a_{m}$ converges. Prove that

$$
\sum_{m=1}^{\infty} m\left(a_{m}-a_{m+1}\right)
$$

converges and deternine its sum.

Solution: Let $\in>0$. As $\sum_{m=1}^{\infty} a_{m}$ is a convergent serins of positive terms, there exists a positive integer $\hat{N}(c)$ such that

$$
\begin{equation*}
0<a_{m+1}+a_{m+2}+\cdots<c / 3 \tag{R:3.1}
\end{equation*}
$$

fon all $m>N(r)$. Lee $n \geq 2 A(r)+1$. If n is even, say $n=2 k$, where $k>N^{\prime}(1)$, from ($\times 3.1$) wn haw

$$
k a_{2 k}<a_{k+1}+a_{k+2}+\cdots+a_{2 k}<1 / 3
$$

so that

$$
\pi u_{n}=2 k \cdot u_{2 k}<2 \epsilon / 3<\epsilon .
$$

If n is odd, say $n=2 k+1$, where $k \geq N(6)$, from (83.1) we have

$$
k a_{2 k+1}<a_{k+2}+a_{k+3}+\cdots+a_{2 k+1}<\varepsilon / 3 .
$$

so that

$$
n a_{n}=2 k a_{2 k+1}+a_{2 k+1}<2 c / 3+c / 3=c .
$$

We have shown that

$$
0<n \omega_{n}<\epsilon, \text { for all } n \geq 2 \mathcal{V}(c)+1
$$

and thus

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

Next, set

$$
S_{n}=\sum_{k=1}^{n} k\left(a_{k}-a_{k+1}\right), \quad n=1,2, \ldots .
$$

We have

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} k a_{k}-\sum_{k=1}^{n} k a_{k+1} \\
& =\sum_{k=1}^{n} k a_{k}-\sum_{k=1}^{n+1}(k-1) a_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n}(k-(k-1)) a_{k}-n a_{n+1} \\
& =\sum_{k=1}^{n} a_{k}-n a_{n_{+1}} .
\end{aligned}
$$

Ielting $n \rightarrow \infty$, we see that $\lim _{n \rightarrow \infty} S_{n}$ exists, and has the valuc $\sum_{i=-1}^{\infty} \|_{k}$, as

$$
\lim _{n \rightarrow \infty} n a_{n+1}=\lim _{n \rightarrow \infty}\left(\left(1+1 j a_{n+1} \cdot a_{n+1}\right)=0-0-0 .\right.
$$

Henco, $\int_{. k=1}^{\infty} k\left(a_{k}-\mu_{k+1}\right)$ converges, and its sum is $\sum_{j=1} a_{k}$.
84. The continued fraction of \sqrt{D}, where D is an odd nonsquare integer >5, has a period of length one. What is the length of the period of the continued fraction of $\frac{1}{2}(1+\sqrt{D})$?

Solution: The continued fraction of $\sqrt{1}$ is of the form

$$
\sqrt{ } D=[a ; \bar{b}]
$$

where a and b are positive integers, so that

$$
\begin{aligned}
\sqrt{D}-a & =\frac{1}{b+\frac{1}{b+\frac{1}{b+\cdots}}} \\
& =\frac{1}{b+\sqrt{\bar{D}-a}}
\end{aligned}
$$

giving

$$
\sqrt{D}=\frac{D+a^{2}-a b-1}{2 a-b} .
$$

As D is not a square, \sqrt{D} is irrational, and we must have

$$
b=2 a, \quad D=a^{2}+1 .
$$

Furthermole, as D is odd and greater than \dot{b}, we have $a=2 c, c \geq 2$ and $D=4 c^{2}+1$. It is casy to check that

$$
\begin{aligned}
& {\left[\begin{array}{c}
1+\sqrt{1 D} \\
2
\end{array}\right]=\cdots} \\
& {\left[\frac{1}{(1+\sqrt[2]{21})-r}\right] \quad=\left[\left.\frac{2 c-1+\sqrt{1}}{21} \right\rvert\,=1\right. \text {, }} \\
& {\left[\begin{array}{cc}
1 \\
\left(\begin{array}{ll}
1 & \frac{1}{2 c} 1 \\
2 c & 1!
\end{array}\right) & -1
\end{array}\right]} \\
& {\left[\begin{array}{c}
1+\sqrt{ } 11 \\
2 r
\end{array}\right] \quad-1}
\end{aligned}
$$

so that the continued fraction of $\frac{1}{2}(1+\sqrt{D})$ is

$$
[c ; 1, \overline{1,2 c-1}]
$$

as $2 r-1>3$, and its period is of length 3 .
85. Let G be a group which has the following two properties:
(i) $(i$ has no element of order 2 ,
(ii) $(x: y)^{2}=(y x)^{2}$, for all $x, y \in C$.

Prove that G is abclian.

Solution: For $x, y \in G$ we have

$$
\begin{aligned}
x^{2}! & =\left(\left(x y^{-1}\right) y\right)^{2} y \\
& \left.=\left(y\left(x y^{-1}\right)\right)^{2} y \quad \text { by }(85.0)(\text { ii })\right) \\
& =\left(y x \cdot y^{-1}\right)\left(y x y^{-1}\right) y
\end{aligned}
$$

that is

$$
\begin{equation*}
x^{2} y=y x^{2} \tag{85.1}
\end{equation*}
$$

Nest, we have

$$
\begin{align*}
x^{-1} y^{-1} x & =x\left(x^{-1}\right)^{2} y^{-1} x \\
& =x y^{-1}\left(x^{-1}\right)^{2} x \tag{85.1}
\end{align*}
$$

That is
(8.5.2)

$$
x^{1} y^{-1}: x=x y^{-1} y^{-1}
$$

Similarly, we have
(85.3)

$$
y^{-1} x^{-1} y=y x^{-1} y^{-1} .
$$

Then we obtain

$$
\begin{align*}
\left(x y \cdot r^{-1} y^{-1}\right)^{2} & =x y\left(x^{-1} y^{-1} x\right) y x^{-1} y^{1} \\
& =x y\left(x y^{-1} x^{-1}\right) y x^{-1} y^{-1} \tag{85.2}\\
& =x y x\left(y^{-1} x^{-1} y\right) x^{-1} y^{-1} \\
& =x y x\left(y x^{-1} y^{-1}\right) x^{-1} y^{-1} \tag{35.3}\\
& =(x y)^{2}\left(x^{-1} y^{-1}\right)^{2} \\
& =(x y)^{2}(y x)^{-2} \\
& =(y \cdot x)^{2}(y x)^{-2} \tag{85.0}\\
& =1
\end{align*}
$$

and thas, as (' has no elements of order 2, we have

$$
x y x^{-1} y^{-1}=1
$$

that is $x y=y x$, proving that ($;$ is abelian.
86. Let $A=\left[a_{i}\right]$ be all $n \times n$ real symmetric matrix whose entries satisfy
(86.0)

$$
a_{i i}=1, \quad \sum_{j=1}^{n}\left|a_{i j}\right| \leq 2
$$

for all $i=1,2, \ldots, n$. Prove that $0 \leq \operatorname{det} A \leq 1$.

Solution: Iet λ denote one of the eigenvalues of A and let $r(f)$ be an eigenvector of A corresponding to λ, so that

$$
\begin{equation*}
A x_{i}=\lambda x . \tag{86.1}
\end{equation*}
$$

Sint $r=\left(x_{1}, \ldots, x_{n}\right)^{t}$ and choose $i, 1<i<11$, so that

$$
, r d\left|\operatorname{mix}_{1 \leq j \leq n}\right| x, \mid \neq 0
$$

lirom the i-th row of (86.1), we obtain

$$
\sum_{j=1}^{n} a_{i}, x_{j}=\lambda x_{i}
$$

so that

$$
(\lambda-1) x_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x,
$$

and thus

$$
\begin{aligned}
|\lambda-1|\left|x_{i}\right| & =\left|\sum_{\substack{j=1 \\
j \neq 1}}^{n} a_{i} j x_{j}\right| \\
& \leq \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i} j\right|\left|x_{j}\right| \\
& \leq\left|x_{i}\right| \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|a_{i j}\right| \\
& \leq\left|x_{i}\right|
\end{aligned}
$$

showing that
(86.2)

$$
|\lambda-1| \leq 1 .
$$

Since A is a real symmetric thatrix, λ is real and from (86.2) we sce that (86.3)

$$
0 \leq \lambda \leq 2
$$

Isel $\lambda_{1}, \ldots, \lambda_{n}$ demote the u cigenvalues of A. Fiach λ_{j} is nonnegative ley (S6.3). Thus we have

$$
\begin{aligned}
0<\text { drtt } A & -\lambda_{1} \lambda_{2} \cdots \lambda_{n} \\
& \leq\left(\frac{1}{n}\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)\right)^{n} \\
& \because\left(\frac{1}{n} \text { trace } A\right)^{n} \\
& =\left(\frac{1}{n} n\right)^{n} \\
& =1 .
\end{aligned}
$$

87. Let R be a finite ring containing an element r which is not a divisor of \%ero. Prove that R must have a multiplicative identity.

Solution: As R is a finite ring there exist integers $n 1$ and n such that

$$
\begin{equation*}
r^{\prime \prime}=r^{n}, \quad 1 \leq n<n . \tag{87.1}
\end{equation*}
$$

We wish to show that

$$
\begin{equation*}
r=r^{k} \tag{87.2}
\end{equation*}
$$

for some integer $k \geq 2$. If $m=1$ we may take $k=n$. If $m \geq 2$, from (87.1), we have

$$
r\left(r^{m-1}-r^{n-1}\right)=0
$$

As r is not a divisor of \%ero, we must have

$$
\begin{equation*}
r^{m-1}-r^{n-1}=0 \tag{8ī.3}
\end{equation*}
$$

If $m-2$ we may take $k=n-1$ (22). If $n \geq 3$, from (87.3) we have

$$
r\left(r^{m-2}-r^{n-2}\right)=0 .
$$

As r is not a divisor of zero, we must have

$$
r^{m-2}-r^{n-2}=0
$$

If $n t \cdot 3$ we may take $k=14-2(>2)$. Continuing in this way, we sen that (87.2) holds with $k=u-m+1$ (2 2). For any $x \in \mathbb{R}$. we have from (87.2)

$$
x r \ldots x r^{l}
$$

and :o

$$
\text { (1, } r^{\prime} \text {) } r \text { 0. } 0
$$

As r is not a divisor of zero, we see that

$$
\begin{equation*}
x=x r^{k-1} \tag{87.4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
x=r^{k-l} x . \tag{87.5}
\end{equation*}
$$

From (87.4) and (83.5) we son that r^{t-1} is a multiplicative identity for R.
88. Set $J_{n}=\{1,2, \ldots, n\}$. For earh non-empty subset S of J_{n} define

$$
w(S)=\max _{s \in S} S-\min _{s \in S} S
$$

Determine the average of $w(S)$ over all non-empty subsets S of J_{n}.

Solution: For $l \leq k \leq l \leq \pi$ let $S(k, l)$ denote the net of subsets of J_{r}, with

$$
\min _{s \in S} S=k, \quad \max _{s \in S} S=l .
$$

We have, for all $S \in S(k, l)$,

$$
u:(S)=l-k,
$$

and

$$
|S(k, l)|= \begin{cases}1, & \text { if } k=l \\ 2^{\prime-k-1}, & \text { if } k<l,\end{cases}
$$

Then we have

$$
\begin{aligned}
& \sum_{r \neq S C . l_{r}} w(S)=\sum_{1 \leq k \leq 1 \leq n} \sum_{S \in S(k, l)} w(S) \\
& -\sum_{1 \leq k<l<n}(l-k)|S(k, l)|
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \underline{2} \text { i } 1 \sum_{l-k+1}^{n} \underline{\sum_{i}} \sum_{k=1}^{n-1} k: 2: 1 \sum_{l=k+1}^{n} 2^{n} \\
& =\sum_{k=1}^{n-1} 2^{-k-1}\left((n-1) 2^{n+1}-(k-1) 2^{k+1}\right) \\
& \cdots \sum_{k=1}^{n-1} k 2^{k-1}\left(2^{n+1}-2^{k+1}\right) \\
& =(n-1) 2^{n} \sum_{k=1}^{n-1} 2^{-k}-\sum_{k=1}^{n-1}(k-1) \\
& -2^{\prime \prime} \sum_{k=1}^{n-1} k \cdot 2^{k}+\sum_{k=1}^{n-1} k \\
& =(n-1) 2^{n}\left(1-\frac{1}{2^{n-1}}\right) \\
& \text {. } 2^{n}\left(2-\frac{(n+1)}{2^{n-1}}\right)+n-1 \\
& =\left(\begin{array}{ll}
n & 1
\end{array}\right) 2^{n}-2(n-1)-2^{n+1}+2(n+1)+n-1 \\
& =(n-3) 2^{n}+(n+3) \text {, }
\end{aligned}
$$

so that the required average is

$$
(n-3) \frac{2^{n}+(n+3)}{2^{n}-1}, \quad n=1,2, \ldots
$$

89. Prove that the number of odd binomial cooffirients in each row
of Pascal's triangle is a powro of 2.

Solution: The entries in the n-th row of Pascal's triangle are the coefficients of the pewers of x it the expansion of $(1+x)^{\prime \prime}$. We write n in binary notation

$$
\begin{equation*}
" \cdots 2^{n_{1}}+2^{n_{2}}+\cdots+י^{14} \tag{90.1}
\end{equation*}
$$

wheir a_{1}, \ldots, a_{k} are inegers such that

$$
\begin{equation*}
a_{1}>a_{2}>\cdots>a_{k} \geq 0 . \tag{89.2}
\end{equation*}
$$

Now

$$
\begin{array}{lll}
(1+x)^{2}-1+2 x+x^{2} & \equiv 1+x^{2} & (\bmod 2), \\
(1+x)^{1}=\left(1+x^{2}\right)^{2} & \equiv 1+x^{4} & (\bmod 2), \\
(1+x)^{8} \equiv\left(1+x^{4}\right)^{2} & \equiv 1+x^{8} & (\bmod 2),
\end{array}
$$

and so generally for any nonnegative integer a we have

$$
(1+x)^{2^{a}} \equiv 1+x^{2^{n}} \quad(\bmod 2)
$$

Thus, we bave

$$
\begin{aligned}
(1+x)^{n}= & (1+x)^{2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}} \\
= & (1+x)^{2^{a_{1}}}(1+x)^{2^{a_{2}}} \cdots(1+x)^{2^{a_{k}}} \\
\equiv & \left(1+x^{2^{a_{1}}}\right)\left(1+x^{2^{a_{2}}}\right) \cdots\left(1+x^{2_{k}}\right) \quad(\bmod 2) \\
\equiv & 1+\left(x^{2^{a_{1}}}+x^{2^{a_{2}}}+\cdots+x^{2_{k}}\right) \\
& +\left(x^{2^{a_{1}}+2^{a_{2}}}+\cdots+x^{2^{a_{L_{1}-1}}+2^{\alpha_{k}}}\right) \\
& \quad+\cdots \\
& \quad+x^{2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}} \quad(\bmod 2),
\end{aligned}
$$

and the number of odd cocfficients is

$$
1+k+\binom{k}{2}+\cdots+\binom{k}{k}=2^{k}
$$

90. From the $n \times n$ array

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
n+1 & n+2 & n+3 & \ldots & 2 n \\
2 n-1 & 2 n+2 & 2 n \cdots 3 & \ldots & 3 n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(n-1) n+1 & (n-1) n+2 & (n-1) n+3 & \ldots & n^{2}
\end{array}\right]
$$

a number r_{1} is selected. The row and column condining x_{1} ate then deleted. l'rom the resultiate array a number r, in selerterl, and its wen and colnum deleted as before. The selection is continued until only one momber x_{n}, remains available for selection. Determine the sum $x_{1}+x_{2} \mid \cdots+x_{n}$.

Solution: Suppose that $x_{n}, 1 \leq i \leq n$, belongs to the r_{i}-th row and the s_{i}-th column of the array. Then

$$
x_{i}-\left(r_{i}-1\right) n \mid s_{i}, \quad 1 \leq i \leq n,
$$

and so

$$
\sum_{i=1}^{n} x_{i}=n \sum_{i=1}^{n} r_{i}-n^{2}+\sum_{i=1}^{n} s_{i}
$$

Now $\left\{r_{1}, \ldots, r_{n}\right\}$ and $\left\{s_{1}, \ldots, s_{n}\right\}$ are permutations of $\{1,2, \ldots, n\}$ and so

$$
\sum_{i=1}^{n} r_{i}=\sum_{i=1}^{n} s_{i}=\sum_{i=1}^{n} i=\frac{n(n \div 1)}{2}
$$

Thus

$$
\sum_{i=1}^{n} x_{i}=\frac{n^{2}(n+1)}{2}-n^{2} \therefore \frac{n(n \mid 1)}{2}=\frac{n\left(n^{2}+1\right)}{2}
$$

91. Suppose that $p \mathrm{X}$'s and q O's are placed on the circumference of a circle. The number of occurrences of two adjacent X's is " and the number of occurrences of two adjarent O 's is b. Determine $a-b$ in terms of p and q.

Solution: L.et

$$
N_{x: x}, \quad N_{x o} . N_{c, r}, N_{\omega}^{\prime}
$$

denote the number of orcurreness of $\mathrm{XX}, \mathrm{XO}, \mathrm{OX}, \mathrm{OO}$, respectively. Then clearly we have

$$
\left\{\begin{array}{l}
N_{\rho_{x}}=a, \\
N_{10}^{\prime}=b, \\
N_{o n}+N_{t x}=p, \\
N_{c o v}+N_{1+\alpha}=q,
\end{array}\right.
$$

so that

$$
\begin{aligned}
a-b & =N_{\tau x}-N_{c o} \\
& =\left(N_{x x}-N_{x c}\right)-\left(N_{o c}+N_{c x}\right) \div\left(N_{o s} \cdot N_{x o}\right) \\
& =p-q+\left(N_{c x}-N_{x o}\right) .
\end{aligned}
$$

Finally, we show that $N_{c x}=N_{x, \text {, }}$ which gives the resull

$$
a-b=p-q .
$$

To see that $N_{o x}=N_{\pi c}$ we consider the values of a function S as we make one clockwise tour of the circumference of the circle, starting and fuishing at the same point. Initially, we let $S=0$. Then, as we tour the circle, the value of S is changed as follows as we pass from each X or O to the next X or O :

$$
\text { new value of } S=\text { old value of } S \nmid c \text {, }
$$

where

$$
c=\left\{\begin{aligned}
1 & , \text { in going form } O \text { to } X, \\
0 & \text {, in going from } X \text { to } X \text { or }() \text { to } O, \\
-1 & , \text { in going from } X \text { to } O .
\end{aligned}\right.
$$

Clearly, the value of S at the end of the tour is $N_{c r}-N_{r c}$. However, S must be 0 at the end as we have returned to the starting point. This completes the proof of $N_{c r}=N_{3 \rho}$, and the solution.
92. In the triangular array
(92.0)

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 3 & 2 & 1 & \\
& 1 & 3 & 6 & 7 & 6 & 3 & 1 \\
1 & 4 & 10 & 16 & 19 & 16 & 10 & 1 \\
1 & 1 & 1
\end{array}
$$

 and the entries b and c immediately to the left and right of a. Absence of ant entry indicales zero. Prove that every row after the second row contains an entry which is even.

Solution: The first eight rows of the triangular array taken modulo 2 are given in (92.1).

						1						
					1	1	1					
				1	0	1	0	1				
			1	1	0	1	0	1	1			
		1	0	0	0	1	0	0	0	1		
	1	1	1	0	1	1	1	0	1	1	1	
1	0	1	0	0	0	1	0	0	0	1	0	1
11	0	1	1	0	1	1	1	0	1	1	0	1

The first four entries in the fourth row of (92.1) are 1101 , which are exactly the same as the first four entries in the cighth row. Thus the pattern

			1	1	0	1	
		1	0	0	0		
		1	1	1	0		
	1	0	1	0			

repeats itself down the left-hand edge of the array. As cach row of (92.2) contains at least one zero, cuery row from the fourth on down contains an
even number. This completes the proof, as the third row contains an even number.
93. A sequeuce of n real numbers x_{1}, \ldots, x_{n} satisfies

$$
\left\{\begin{array}{l}
x_{1}=0, \tag{93.0}\\
i x_{1}|\cdot| x_{1-1}+r \mid, \quad 2<i<n
\end{array}\right.
$$

where 8 is a positive read number. Determine a lowe bound for the average of x_{1}, \ldots, x_{n} as a luucion of, only.

Solution: Jet x_{n+1} be any real number such that

$$
\left|x_{n+1}\right|=\left|x_{n}+c\right| .
$$

Then, we have

$$
\begin{aligned}
\sum_{i=1}^{n+1} x_{i}^{2} & =\sum_{i=2}^{n+1}\left|x_{i}\right|^{2}=\sum_{i=2}^{n+1}\left|x_{i-1}+c\right|^{2} \\
& =\sum_{i=2}^{n+1}\left(x_{i-1}+c\right)^{2} \\
& =\sum_{i=2}^{n+1} x_{i-1}^{2}+2 c \sum_{i=2}^{n+1} x_{i-1}+c^{2} n \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 c \sum_{i=1}^{n} x_{i}+c^{2} n
\end{aligned}
$$

so that

$$
0 \leq x_{n+1}^{2}=2 c \sum_{i=1}^{n} x_{i}+c^{2} n
$$

and thus (as $c>0$)

$$
\frac{1}{\pi} \sum_{i=1}^{n} x_{i} \geq-\frac{c}{2}
$$

94. Prove that the polynomial

$$
\begin{equation*}
f(x)=x^{r}\left|x^{3}\right| x^{2} \mid x+5 \tag{94.0}
\end{equation*}
$$

is irmolucible over Z for $n \geq 1$.

Solution: Suppose $f(x ;$ is reducible over Z lhen them axis monic poly-

Thus, we haw

$$
j=f(0)=g(0) h(0),
$$

and, as $g(0), h(0)$ are integers and 5 is prime, "e have wit hom lose ot geveratity

$$
g(0)=: t 1, \quad h(0)=i: 5 .
$$

Lest

$$
g(x)=\prod_{y=1}^{1}[(x-\beta,)
$$

be the factorization of $g(x)$ over \mathbf{C}. Then, we have

$$
1=|g(0)|=\prod_{j=1}^{r}\left|\beta_{i}\right|
$$

and so at least one of the $\left|\beta_{j}\right|$ is less than or equal to 1 , say

$$
\left|3_{1}\right| \leq 1, \quad 1 \leq 1 \leq r .
$$

Hence

$$
\begin{aligned}
\mid f\left(\beta_{l}\right) i & =\left|\beta_{l}^{n}\right| 3_{l}^{3}+\beta_{l}^{2}\left|\beta_{l}\right| 5 \mid \\
& \geq 5-\left|\beta_{l}\right|-\left|\beta_{l}\right|^{2}-\left|\beta_{l}\right|^{3}-\left|3_{3}\right|^{n} \\
& \geq 5-1-1-1-1 \\
& =1,
\end{aligned}
$$

which contradicts

$$
f\left(\beta_{l}\right)=g\left(\beta_{l}\right) h\left(\beta_{l}\right)=0 h\left(\beta_{l}\right)=0 .
$$

This prows that $f(x)$ is irreducible over Z.
95. Leet a_{t}, \ldots, π_{r} be $n(>1)$ distinct reat numbers. Devermine the gennral solution of the system of $n-2$ linear equations
in the n unknowns x_{1}, \ldots, x_{n}.

Solution: Set

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-u_{n}\right) .
$$

For $k=0,1, \ldots, n-1$ the partial fraction expansion of $x^{k} / f(x)$ is

$$
\begin{equation*}
\frac{x^{k}}{f(x:)}=\sum_{i=1}^{n} \frac{a_{i}^{k} / f^{\prime}\left(a_{i}\right)}{x-a_{i}} \tag{95.1}
\end{equation*}
$$

Multiplying both sides of (95.1) by $f(x)$, and equating coefficients of $: x^{n-1}$, we obtain

$$
\sum_{i=1}^{n} \frac{u_{i}^{k}}{f^{\prime}\left(a_{i}\right)}= \begin{cases}0 & , k=0,1, \ldots, n-2 \tag{95.2}\\ 1 & , k=n-1\end{cases}
$$

This shows that

$$
\underline{u}=\left(\frac{1}{f^{\prime}\left(a_{1}\right)}, \ldots, \frac{1}{f^{\prime}\left(a_{n}\right)}\right)
$$

and

$$
y=\left(\frac{n_{1}}{f^{\prime}\left(a_{1}\right)}, \ldots, \frac{n_{n}}{f^{\prime}\left(a_{n}\right)}\right)
$$

are two solutions of (95.0). These two solutions are linealls indepoudeme for otherwise thene would exist ral mumbers s and t (not hoth zero) such that

$$
s u t+x=(0 \ldots, 0) .
$$

1.hat is

$$
\begin{equation*}
s+l a_{i}-0, \quad i=1,2, \ldots, n . \tag{95.3}
\end{equation*}
$$

If $t=0$ then from (95.3) we have $s=0$. which is a contradiction. Thus, $1 \neq 0$ and (95.3) gives

$$
a_{i}=-\frac{s}{t}, \quad i=1,2, \ldots, n,
$$

which cointradicts the fart that the: n_{i} are distinct. Thus the solutions \underline{u} and \underline{v} are linearly independent.

Next, as the a_{i} are distimet, the Vandermonde determinant

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & \cdots & a_{r_{1}-2} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{n-2}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{n-3} & a_{2}^{n-3} & \cdots & a_{n-2}^{n-3}
\end{array}\right|
$$

does not vallish, and so the rank of the coefficient matrix of (95.0) is $n-2$. Thus all solutions of (95.0) are given as linear combinations of any two linearly independent solutions. Hence all solutions of (95.0) are given by

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) & =\alpha \underline{~}+\beta_{\underline{w}} \\
& =\left(\frac{\alpha+\beta a_{1}}{f^{\prime}\left(a_{1}\right)}, \ldots, \frac{\alpha+B a_{n}}{f^{\prime}\left(a_{r_{1}}\right)}\right),
\end{aligned}
$$

for real numbers a and β.
96. Fivaluate the sum

$$
S(N)=\sum_{\substack{1 \leq m<n<N \\ m+n>i \\ \cdots n \\ \operatorname{cc\cdot n}(m, n)-1}} \frac{1}{m n}, \quad N=2,3, \ldots
$$

Solution: lor $N>3$ we have

$$
\begin{aligned}
& S(N)=\sum_{\substack{1 \leq m<n \leq N-1 \\
m+n>N}} \frac{1}{m n}+\sum_{\substack{1 \leq m<n=N \\
m+n>N}} \frac{1}{m n} \\
& \operatorname{CCl})(m, n)=1 \quad \operatorname{GCD}(m, n)=1 \\
& =\sum_{\substack{1 \leq m<n \leq N-1 \\
m+n>N-1}} \frac{1}{n i n}-\sum_{\substack{1 \leq n:<n \leq N-1 \\
m+n=N}} \frac{1}{m n}+\sum_{\substack{1 \leq m<N \\
(i C D)(m, N)=1}} \frac{1}{m i N} \\
& G C D(m, n)=1 \quad G i: D(m, n)=1 \\
& =S(N-1)-\sum_{\substack{1 \leq m<N / 2 \\
G O D\left(m, N^{\prime}\right)=1}} \frac{1}{m(N-m)}+\frac{1}{N} \sum_{\substack{1 \leq m<N \\
\operatorname{ci} \cdot D)\left(m_{0}, N^{\prime}\right)=1}} \frac{1}{m} \\
& =S(N-1)-\frac{1}{N} \sum_{1 \leq n_{1}<N / 2} \frac{1}{m}-\frac{1}{N} \sum_{1 \leq m<N / 2} \frac{1}{N-m} \\
& G C \cdot D(m, N)=1 \quad G C \cdot D(m, N)=1 \\
& +\frac{1}{N} \sum_{1 \leq m<N} \frac{1}{m} \\
& \operatorname{GCD}(m, N)=1
\end{aligned}
$$

$$
\begin{aligned}
& =S(N-1) \quad \frac{1}{N} \sum_{\substack{1 \leq m<N \\
(i c \cdot N(m, N)=1}} \frac{1}{m}+\frac{1}{N} \sum_{\substack{1 \leq m<N \\
(i C N(m, N)=1}} \frac{1}{m} \\
& -S(N \quad 1) . \quad l
\end{aligned}
$$

remembering that ($;(1)(N / 2, N)>I$ for even $N(\geq 4)$. Thus, we have

$$
S(N) \quad S(N-1 ; \quad S(\Lambda \quad O) \quad S(2)-1 / 2
$$

97. Fivaluate the limit

$$
\begin{equation*}
L-\lim _{n \rightarrow \infty} ._{n}^{1} \sum_{j-1}^{n} \sum_{k=1}^{n} \frac{j}{j^{2}+k^{2}} . \tag{97.0}
\end{equation*}
$$

Solution: l’artition the unit spuare $[0,1] \times[0,1]$ into n^{2} sulsquarses by the partition points

$$
\{(j / n, k / n): 0 \leq j, k \leq n\} .
$$

Then a Rieman sum of the function $x /\left(x^{2}: y^{2}\right)$ for this partition is

$$
\sum_{1 \leq, k \leq \leq: i} \frac{j / n}{(j / n)^{2}+(k / n)^{2}} \frac{1}{n^{2}}=\frac{1}{n} \sum_{1 \leq j, k \leq n} \frac{j}{j^{2}+k^{2}},
$$

and also

$$
\lim _{n \cdot \infty} \sum_{1<j, k \leq r_{i}} \frac{j / n}{(j / n)^{2}+(k / n)^{2}} \frac{1}{n^{2}}=\iint_{[0,1] \times[0,1]} \frac{x}{x^{2} \cdot 1 y^{2}} d x d y
$$

so that (97.0) becomes

$$
I=\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} d x d y
$$

$$
\begin{aligned}
& =\int_{\theta=0}^{\pi / 4} \int_{r=0}^{\operatorname{soc} \theta} \cos \theta d r d \theta \quad-1 \int_{\theta=\pi / 4}^{\pi / 2} \int_{r=0}^{\csc \theta} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 4} d \theta+\int_{r / 1}^{\pi / 2} \cot \theta d \theta \\
& -\pi / 4 \cdot \ln \sin \theta \prod_{\pi / 4}^{\pi / 2} \\
& -\pi / 1-\ln (1 / \sqrt{ } 2!
\end{aligned}
$$

that is $1 .-2 \pi / 1+(\ln 2) / 2$.
98. Prove that
(98.0)

$$
\tan \frac{3 \pi}{11}+4 \sin \frac{2 \pi}{11}=\sqrt{ } 11
$$

Solution: For ronveniense wet $\operatorname{let} p=\pi / 11$, and set

$$
c=\cos p, \quad s=\sin p
$$

Then, wh have $c+$ is $=\rho^{\mu i}$ and so $(r+i s)^{11}=-1$, that is

$$
\begin{aligned}
& c^{11}+11 c^{10} s i-55 c^{9} s^{2}-165 c^{8} s^{3} i+330 c^{7} s^{4}+1162 i^{3} s^{5} i \\
& -162 c^{5} s^{6}-330 c^{4} s^{7} i+165 c^{3} s^{8}+55 r^{2} s^{3} i-11 c s^{10}-s^{11} i=-1 .
\end{aligned}
$$

Equating imaginary parts, we obtain

$$
11 r^{10} s-165 r^{A} s^{3}+462 s^{6} s^{5}-330 c^{4} s^{7}+55 r^{2} s^{9}-s^{11}=0 .
$$

lirom (98.1), as $s \neq 0$, we have
(98.2)

$$
11 c^{10}-16.5 c^{8} s^{2}+462 c^{6} s^{4}-330 c^{-1} s^{6}+55 c^{2} s^{8}-s^{10}=0 .
$$

Nexs, as
(98.3)

$$
r^{2}=1-s^{2},
$$

the equation (98.2) becomes
(98.4) $\quad 11-220 s^{2}+1232 s^{4}-2816 s^{6}+2816 s^{8}-1024 s^{10} \ldots 0$, and thus

$$
\begin{aligned}
\left(11 s-44 s^{3}-\right. & \left.32 s^{5}\right)^{3}-11 c^{2}\left(1-4 s^{2}\right)^{2} \\
& =121 s^{2}-968 s^{4}+2640 s^{6}-2816 . s^{8}+1024 s^{10} \\
& \quad-11\left(1-s^{2}\right)\left(1-8 s^{2}+s^{4}\right) \\
= & -11+220 s^{2}-1232 s^{1}+2816 s^{6} \cdot 2816 s^{8}+1024 s^{10} \\
= & 0,
\end{aligned}
$$

by (98.1). This proves that

$$
\begin{equation*}
\frac{11 s \cdot 11 s^{3}-32 s^{5}}{r\left(11 \cdot s^{2}\right)}=1 v^{i} 11 \tag{9.5.5}
\end{equation*}
$$

Next, we have

$$
\begin{aligned}
\tan 3 p+4 \sin 2 p & =\frac{3 \tan p-\tan ^{3} p}{1-3 \tan ^{2} p}+8 \sin p \cos p \\
& =\frac{3 s c^{2}-s^{3}}{e^{3}-3 s^{2} c}+8 s c
\end{aligned}
$$

that is, using (98.3),

$$
\begin{equation*}
\tan 3 p+1 \sin 2 p=\frac{11 s-44 s^{3}+32 s^{5}}{c\left(1-4 s^{2}\right)} \tag{98.6}
\end{equation*}
$$

Then, from (98.5) and (98.6), we obtain

$$
\tan 3 p+4 \sin 2 p= \pm \sqrt{11}
$$

As $\tan 3 p>0, \sin 2 p>0$, we must have

$$
\tan \frac{3 \pi}{11}+4 \sin \frac{2 \pi}{11}=\sqrt{11}
$$

as required.
99. For $n=1,2, \ldots$ let

$$
c_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} .
$$

Evaluate the sum

$$
S=\sum_{n=1}^{\infty} \frac{c_{n}}{n(n+1)} .
$$

Solution: lat. k be a positive integer. We have

$$
\begin{aligned}
\sum_{n=1}^{k} \frac{c_{n}}{n(n \mid 1)} & =\sum_{n=1}^{k}\left(\begin{array}{cc}
c_{n} & c_{n} \\
n & n \mid-1
\end{array}\right) \\
& =\sum_{n=1}^{k} \frac{c_{n}}{n}-\sum_{n=2}^{k+1} \frac{c_{n-1}}{n} \\
& =c_{1}+\sum_{n=2}^{k} \frac{\left(c_{n}-c_{n-1}\right)}{n}-\frac{c_{k}}{k+1} \\
& =1+\sum_{n=2}^{k} \frac{1}{n^{2}}-\frac{c_{k}}{k+1} \\
& =\sum_{n=1}^{k} \frac{1}{n^{2}}-\frac{c_{k}}{k+1} \\
& =\sum_{n=1}^{k} \frac{1}{n^{2}}-\frac{\left(c_{k}-\ln k\right)}{k+1}-\frac{\ln k}{k+1} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, and using the fact that

$$
\lim _{k \rightarrow \infty}\left(c_{k}--\ln k\right)
$$

exists, and also

$$
\lim _{k \rightarrow \infty} \frac{\ln k}{k+1}=0,
$$

we find that

$$
S=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

100. For $r>1$ determine the sum of the infinite series

$$
\frac{x}{x+1}+\frac{x^{2}}{(x+1)\left(x^{2}+1\right)}+\frac{x^{4}}{(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)}+\cdots
$$

Solution: For na a positive integer, set

$$
S_{n}(x)-\frac{x}{r+1}+\frac{c^{2}}{\left(x+1!\left(c^{2}+1\right)\right.}+\cdots 1 \quad(: 11)(x=11) \cdots\left(x: x^{2^{2 \prime}}+1\right)
$$

so that

$$
\begin{aligned}
\frac{S_{n}(x)}{x-1}- & \frac{x}{x^{2}-1}+\frac{x^{2}}{x^{4}-1}+\cdots+\frac{x^{2^{\prime \prime}}}{x^{2^{n+1}}-1} \\
= & \left(\frac{1}{x-1}-\frac{1}{x^{2}-1}\right)+\left(\frac{1}{x^{2}-1}-\frac{1}{x^{4}-1}\right) \\
& +\cdots+\left(\frac{1}{x^{2^{2}}-1}-\frac{1}{x^{2 n+1}-1}\right) \\
= & \frac{1}{x-1}-\frac{1}{x^{2^{2+1}}-1} .
\end{aligned}
$$

Thus, as $x>1$, we have

$$
\lim _{n \rightarrow \infty} \frac{S_{n}(x)}{x-1}=\frac{1}{x-1}
$$

giving

$$
\frac{x}{x+1}+\frac{x^{2}}{(x+1)\left(x^{2}+1\right)}+\cdots=\lim _{n \rightarrow \infty} S_{n}(x)=1
$$

THE SOURCES

Problem

01: Gauss, see Werke, Vol 2, Göttingen (1876), pp.11-45, showed that

$$
\begin{aligned}
& \omega^{r_{1}}+\omega^{r_{2}}+\cdots+\omega^{r_{(p-1) / 2}}=\left(-1+i\left(\frac{p-1}{2}\right)^{2} \sqrt{p}\right) / 2, \\
& \left.\omega^{n_{1}}+\omega^{n_{2}}+\cdots+\omega^{n_{(p-1) / 2}}=\left(-1-i^{\frac{p-1}{2}}\right)^{2} \sqrt{p}\right) / 2 .
\end{aligned}
$$

04: This result is inplicit in the work of Ganss, sen Werke, vol 2 , Göttingen (1876), p.292.

05: The inore general equation $y^{2}=x^{3}+\left((4 b-1)^{3}-4 a^{2}\right)$, wherr" " has no prime factors $\equiv 3(\bmod 4)$, is treated in L.J. Mordell, Diophantine Equations, Academic Press (1969), pp.238-239.

09: This problem was suggested by Problem 97 of The Gineen Book. It also appears as Problem E2115 in American Mathematical Monthly 75 (1968), p. 897 with a solution by G.V. Mc.Williams in American Mathematical Monthly 76 (1969), p. 828.

10: This problem is due to Professor Charles A. Nicol of the University of South Carolina.

11: Another solution to this problem is given in Crux Mathematicorum 14 (1988), pp.19-20.

14: The more general equation $d V^{2}-2 \mathrm{e} V W-d W^{2}=1$ is treated in K. Hardy and K.S. Williams, On the solvability of the diophantine equation $d V^{2}-2 \mathrm{e} V W-d W^{2}=1$, Pacific Journal of Mathematics 124 (1986), pp.1:15-158.

17: This generalizes the well-known result that the sequence $1,2, \ldots, 10$ contains a pair of consecutive quadratic residues modulo a prime ≥ 11. The required pair can be taken to be one of $(1,2),(4,5)$ or $(9,10)$.

19: Based on Theorem A of G.H. Hardy, Notes on some points in the integral calculus, Messenger of Mathematics 18 (191!), pp.107-112.

20: This identity can be found (eqn. (4.9)) on p. 47 of II.W. Gould, Combinatorial Identilies, Morgantown. W. Va. (1972).

21: The more general equation $u_{1} x_{1}+\cdots+a_{n} x_{n}=k$ is treated in IIua Loo Keng, Introduction to Ninmber Theory, Springer Verlag (1982), see Theorem 2.1, p. 276.

22: Finite sums of this type are discussed extensively in Chapter 15 of W.l. Ferrar, IIegher Algebra, Oxford University I'ress (1950)).

25: See Problem 2 on p. 113 of W. Sierpinski, Elementary Therry of vimbers, Warsaw (1964).

26: Suggested by Problem A-3 of the Forty Seventh Annual William lowell Putnam Mathematical Competition (December 1986).

29: The discriminant of $f\left(x^{k}\right), k \geq 2$, is given in terms of the discriminant of $f(x)$ in R.L. Goodstcin, The discrimiruant of a certain polynomial, Mathematical Gazette 53 (1969), pp.60-61.

30: II. Steinhaus, Zadanie 498, Matematyka 10 (1957), No. 2, p. 58 (Polish).

34: This problenı was given as Problem 3 in Part R of the Seventh Annual Carleton University Mathematics Competition (1979).

37: Based on a question in the Scholarship and Entrance Examination in Mathematics for Colleges of Oxford University (1975).

38: Based on a question in the Scholarship and Entrance Examination in Mathematics for Colleges of Oxford University (1972).

39: Based on a question in the Scholarship and Entrance Examination in Mathematics for Colleges of Oxford University (1973).

40: Based on a question in the Scholarship and Entrance Fxamination in Mathematics for Colleges of Oxford University (1973).

41: This is a classical result, sce for example H.S.M. Coxeter and S.L. Greitzer, Geomptry Rcvisited, Mathematical Association of America (1967), pp.57, 60.

45: Suggested by T.S. Chu, Angles with rational tangents, American Mathematical Monthly 57 (1950), pp.407-408.

47: Suggested by W. Giross, P. Hilton, J. Pederseln, K.I'. Yap, An algorithm for multiplication in modular arthmetic, Mathematics Maga\%ine 59 (1086), pp.1477 170.

48: Based on Satz 3 on p. 8 of Th. Skolem, Diophantische ('leichungen, Chelsea Publishing Co., New York (1950).

49: Based on Example 1 in D.G. Mead, Inteyrution, American Mathematical Monthly 68 (1961), pp.152-156.

52: Suggested by 5.4 .5 of L.C. Larson, Prollem-Solving Through Problems, Springer-Verlag (1983).

53: \quad See Problem 48 of Lewis Carroll's Pillou Problems.
56: See Problem 1 on p. 13 of W. Sierpinski, Elementary Theory of Numbers, Warsaw (1964).

59: See Problem 12 on p. 368 of W. Sierpinski, Elementary Theory of Numbers, Warsaw (1964).

62: This problem was suggested by Problem A-4 of the Thirty Eighth Annaal William Lowell Putnam Mathematical Competition (December 1977).

63: This problem was shown to us by Professors David Richman and Michael Filaseta of the Cniversity of South Carolina.

64: This result is due to Il.J.S. Smith, On the value of a certain arithmetical determinant, Proceedings of the London Mathernatical Society 7 (1876), pp.208-212.

68: This is a well-known problem, see for example 4.4.4 in I.C. Larson, Problem-Solving Through Problems, Springer-Verlag (1983).

69: This problem was suggested by Problem 3 of Part A of the Fifteenth Annual Carleton University Mathematics Competition (1987).

70: Forms $a x^{2}+b y^{2}+c z^{2}$ which represent every integer have been characlerized by L.E. Dickson, The forms a $x^{2}+b y^{2}+\sigma^{2}$ which represent all integers, Bulletin of the American Mathematical Society, 35 (1929), pp.55-59.

75: This problem was suggested by Problem 95 of The Green Brok.
82: Suggested by K.A. Bush, On an application of the mean value theorem, American Mathematical Monthly 62 (1955), pp.557-578.

86: Suggested by idcas of $\S 7.5$, Estimates of characleristic roots, in L. Mirsky, An Introduction to Linear Algebra, Oxford University Press (1972).

89: This is a well-known problem. A generalization to the multinomial theorem is given by H.D. Ruderman in Problem 1255, Mathematics Magazine 61 (1988), pp.52-54.

94: Suggested by an example given in a talk by Professor Michael Filaseta at Carleton University, October 1987.

95: See Problem 2 on p. 219 of W.I. Ferrar, Higher Alyebra, Oxford University Press (1950).

98: \quad See Problem 29 on p. 123 of F.W. Itobson, A Treatise on Plane and Advanced Trigonometry, Dover Publications, Inc. New York (1957).

[^0]: - To be reptinted by Dover P'ublications in 1997.

