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PREFACE TO THE FIRST EDITION

1t has become the fashion for some authors to include literary quotations in
thrit mathematical texts, presumably with theaim of connecting mathematics
and the hnmanities. The preface of The Green Book® of 100 practice problems
ton undergraduate mathematics competitions hinled a1 connections between
inoblem-solving and all the traditional elements of a fairy tale: mystery,
seute b, discovery, and finally resolution. Although 7'he Red Book may seem 1o
huae pohiical overtones, rest assured, dear 1cader, that the quotations (labelled
M:nix, Pnshkin and ‘lotsky, just for fun) are metely an inspiranion for your
ey throngh the enchanied sealims of mathemarics

The Red Book contains 100 problems for undergiaduate students training
fin mathematics comperitions, panicularly the William Lowell Putnam
M:ithematical Competition. Along with the problems come useful hints, and
complete solutions. The book will also be useful to anyone interested in the
pasing and solving of mathematical problems at 1he undergraduate level.

Many of the problems were suggested by ideas originating in a varicty of
suirces, including Crux Mathematicorum, Mathematics Magazine and the
American Mathematical Monthly, as well as various mathematics compeu-
tions. Where possible, acknowledgement to known sources is given at the end
of the book.

Once again, we would be interested in your reaction to The Red Book, and
invite comments, alternate solutions, and cven corrections. We make noclaim
that the solutions are the ““best possible’ solutions, but we trust that yon will
find them elegant cnongh, and that The Red Book will be a practical tool in
raining undergraduale competitors.

We wish to thank our typesctter and our literary adviser at Inieger Press for
their valuable assisiance in this project.

Kenneth S. Williams and Kenneth Hardy

Ouawa, Canada

May, 1988

*To be reprinied by Dover Publications in 1997.
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NOTATION

denotes the greatest integer < z, where z is a real nnmber.
deuotes the natural logarithm of z.
denotes the exponential function e*.

denotes Fuler’s totient function defined for any natural num-
ber n.

denotes the greatest common divisor of the integers ¢ and b.

denotes the binomial coefficient n!/k!(n — k)!, where n and
k are non-negative integers (the symbol having value zcro
when n < k).

denotes Legendre’s symbol which has value 41 (resp. —1)
if the integer n is a qnadratic residne (resp. nonresidue)
modnlo the odd prime p .

denotes the degree of the polynomial f(z) .
denotes the transpose of the row vector g .

denotes the number of distinct prime divisors of the positive
integer n.

denotes the derivative of the function f(z) with respect to
z.

denotes the determinant of the square matrix A.
denotcs the domain of rational integers.

denote the fields of rational, real, complex numbers respec-
tively.






THE PROBLEMS

Murikind always scts 1tself only such problemns as il can solu; .. it
will always be found that the task itself avises only when the ma-
terial conditions for its solution already exist or are al least in the
process of formation.

Karl Marx (1818-1883)

1. Let p denote an odd prime and sct w = exp(2wi/p). Evaluate the
product

(1.0) E(@)=(w4+w?+...+0"e-0n)w™ 4+ " + ... $wNe-1/2),

where r1,...,7(;_1)/2 denote the (p — 1)/2 quadratic residues modulo p and
1y, N(p—1)/2 denote the (p — 1)/2 quadratic nonresidues modulo p.

2. Let k denote a positive integer. Dctermine the number N(k) of
triples (2,y,2) of integers satisfying

’ lx—!llsk» ly—zlsk’ |2‘1|Sk-

3.  Let p=1(mod 4) be prime. It is known that therc cxists a unique
integer w = w(p) such that

w?=-1 (modp), 0<w<p/2



2 PROBLEMS

(For example, w(5) = 2,2¢(13) = 5.) Prove that there exist integers a,b,¢,d
with ad — bc = 1 such that

(w +1)

pX2 420 XY 4 Y2 = (aX +bY ) 4 (cX +dY)2

(For example:, when p = 5 we have
SX241XY +Y = X2 (2X + V),
and when po 13 we have

13X24+10XY +2Y2 = (3X +¥Y)2 4+ (2X 4+ Y)2)

4. Let d.(n), » = 0,1,2,3, denote the number of positive integral
divisors of n which are of the form 4k + 7. Let m denote a positive integer.
Prove that

e . s m
(4.0) Sahtn) sl = 3 7 555

5.  Prove that the equation
(5.0) ¥=2z"+23

has no solutions in integers z aod y.

6.  Let f(z,y) — ez? 4+ 2bzy +cy? be a positive-definite quadratic form.
Prove that

(ftzr, 91)f (22, 92)) 2 f(21 =~ 22,80 — ¥2)
(6.0

> (ac - B¥)(z1y2 — z291)%,



PROBLEMS 3

for all real numbers z;,z2,y1,¥2-

7. Let R,S5,T be three real numbers, not all the same. Give a condi-
tion which is satisfied by onc and only one of the three triples

(R,S,T),
(7.0) (T,~S +2I\R  S+7),
(R- 5+ T.2R-S,R).

8.  Let az? + bzy + cy? and Az? + Bzy + Cy? be two positive-definite
quadratic forms, which are not proportional. Provc that the form

(8.0) (aB — bA)z® + 2(aC — cA)zy + (bC — cB)y?

is indefinite.

9. Evaluate the limit
n ok
(9.0) L=lim 252

n—eo 20 = k

10. Prove that there does not exist a constant ¢ > 1 such that
(10.0) n°g(n) 2 m¢(m),

for all positive integers n and m satisfying n > m.

11.  Let D be a squarefree integer greater than 1 for which there cxist
positive integers A;, Az, B), By such that

(11.0) D= A%+ B} =A%+ B3
’ (AlyBl) #(A’hB?)‘



4 PROBLEMS

Prove that neither
2D(D + A A+ By Bg)

nor
2D(D + A A, - By Bg)

is the square of an integer.

12. Let Q and R denote the ficlds of rational and real numbers
respectively. Let K ond L be the smallest subliclds of R whick contain hoth
Q and the real numbers

/1985 + 311985 and /3970 + 64v/1985,

respectively. Prove that K = L.

13.  Let k and [ be positive integers such that
GCD(k,5) = GCD(1,5) = GCD(k,1) = 1

and
—k? + 3kl — I* = F?, where GCD(F,5) = 1.

Prove that the pair of cquations

k=22 442
(13.0) { | = z2 + 2zy + 23}2,

has exactly two solutions in integers z and y.

14. Ict 7 and s be non-zero integers. Prove that the equation
(14.0) (7 = $%)z? — drszy — (+2 — s%)yt =1

has no solutions in integers = and .



PROBLEMS

.

15.  Evaluate the integral

1
(15.0) I= / Inzhn(l - z) dr .
0
16.  Solve the recurrence relation
" n n
G. ;) - —— =1,2,..

(16.0) ,_Z. (I;)u(l‘) s n 12y

17. let » and k be positive integers. Let p be a prime such that

p>@*+n+ kP +k.
Prove that the sequeuce
(17.0) nE, 0?4+, nP 42,02 41,

where § = (n? + n 4 k)% — n® 4 k, contains a pair of integers (m,m + k) such

that
(5)- (=)=
P P ’

18.  Let

I SRS SR
T4n+1 " m+3 m+2°

a, n=0,1,... .

Docs the infinite series o2 a, converge, and if so, what is its sum?

19.  leta,...,am be m (> 2) real numbers. Sct

An=ay+ay+...+a,, n=12....m.
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Prove that

i: A 2 m‘ 2
(19.0) ( -—'i) <12y a2
n=2 n n=1

20. Fvaluate the sum

N\ (Tl
S=3
k:z0) (%k l)

for all positive integers n.

21.  Let a and b be coprime positive integers. For k a positive integer,
let N(k) denote the number of integral solutions to the equation

(21.0) az+by=k, >0, y>0.
Evaluate the limit Nk
L= lim N .
k—too k

22. Let a, d and r be positive integers. For k = 0,1,... set

1
(a+ kd)(a+ (k+ 1)d)...(a + (k+r)d)

(22.0) ug = ug(a,d,r) =

Evaluate the sum u
S = Z Uk,
k=0

where n is a positive integer.

23. Let z3,...,2, be n (> 1) real numbers. Set

zj=a;—-2; (1<i<j<n).
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let I be a real-valued function of the n(n — 1)/2 variables z;; such that the
inequality

n
(23.0) Flzy,12,..., 1, ln)SZTZ
k=1

holds for wll z,...,2p.
Prove that equality cannot hold in §23.0) if 320, a4 # 0.

24. Let «yyenoyty be m (2 1) real numbers which are such that

> -m=1 Gn # 0. Prove the inequality

m m 2
(24.0) (2_, na?,) / (Z a.,) > 7\%,_; .

25. Prove that there exist infinitely many positive integers which are
not expressible in the form n? + p, where n is a positive integer aud p is a
prime.

26. Evaluate the infinite serics

& 2
S= Z:u‘ctan (n—"’) .

n=1

217. Let py,...,pn denote n (> 1) distinct integers and let fu(z) be
the polynomial of degree n given by

fa@)=(==m)(z -p2)...(x —~ pn).
Prove that the polynomial

9n(2) = (fa(2))* +1
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cannot be expressed as the product of two non-constant polynomials with
integral coefficients.

28. ‘Two people, A and B, play a game in which the probability that
A wins is p, the probability that B wins is g, and the probability of a draw is
r. At the beginuing, A has m dollars and B has n dollars. At the end of each
game the winner takes a dollar fromn the loser. If A and I} agree to play until
one of them loses all his/her money, what is the probabilty of A winuing all
the noney?

29. Let f(z) be a monic polynomial of degree n > 1 with complex co-
efficients. Let xy,. ..,z denote the n complex roots of f(z). The discriminant
D(f) of the polynomial f(z) is the complex number

(20.0) o= II G-z

1<i<i<n

Express the discriminant of f(z2) in terms of D(f) .

30.  Prove that for cach positive integer n there exists a circle in the
zy-plane which contains exactly = lattice points.

31. Let » be a given non-negative integer. Determine the number
S(n) of solutions of the equation

(31.0) z+29+2:=mn

in non-negative integers z,y, z.

32.  Iet n be afixed integer > 2. Determine all functions f(z), which
are bounded for 0 < z < @, and which satisfy the functional equation

120)  f@)= % (j (%) H(f_:;_q) +U.+[(z+(n—l)a)).

n
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33. Let | denote the closed interval [a,b], @ < b. Two functions
f(z), g(z) are said to be completely differenton 1 if f(z) # g(x) forall zin 1.
Let ¢(z) and 7(z) be functions defined on I such that the differential equation

dy

E:

v+ g(z)y + r(2)

has three solutions y1 (), y2(2), ys(z) which are pairwise completely different
on I. If z(z) is a fourth solution such that the pairs of functions 2(z), 1.(z)
are completely different for i — 1,2,3, prove that there exists a constant
K (#£0,1) such that

. _ 0Ky —y3) + (1~ K)yays
#0 =T D+ e Fw)

34. Let a,, n = 2,3,..., denote the number of ways the product
bybe ... b, can be bracketed so that only two of the b; are multiplied together
at any one time. For example, a; = 1 since byb; can only be bracketed
as (bibz), whereas az = 2 as bybabs can be bracketed in two ways, namely,
(b1(b2b3)) and ((byb;)b3). Obtain a formula for ay,.

35. Evaluate the limit

A .
(35.0) L= llg](‘) —?;/; tan(ysinz) dz .

36. Let ¢ be a real number with 0 < ¢ < 1. Prove that there are
infinitely many integers n for which

(36.0) cosn>1-—¢.
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37.  Determine all the functions f, which are everywhere differentiable
and satisfy

(37.0) J@)+ ) = 1 (74)

-y

for all real £ and y with zy £ 1.

38. A point X is chosen inside or on a circle. ‘I'wo perpendicular
chords AC and BD of the circle are drawn through X. (In the case when X
is on the circle, the degenerate case, when one chord is a diameter and the
other is reduced to a point, is allowed.) Find the greatest and least values

which the sum § = |AC| 4 |B D] can take for all possible choices of the point
X.

39. For n = 1,2,... define the set A, by

A = {0,2,4,6,8,...}, if n=0(mod2),
"7 {0,3,6,...,3(n~1)/2}, ifn=1(mod?2).

Is it true that

U ﬂ A..+k) ﬂ (U An+k>

n=1 n=1

40. A sequence of repeated independent trials is performed. Each
trial has probability p of being successful and probability ¢ = 1 — p of failing.
The trials are continued until an uninterrupted sequence of n successes is
obtained. The variable X denotes the number of trials required to achieve
this goal. If pr = Prob(X = k), determine the probability generating function
I(z) defined by

(40.0) P(z) = i pr k.

k=0
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41. A. B,C, D arc four points lying on a circle such that ABCD is a
convex quadrilateral. Determine a formula for the radius of the circle in terms
of a =|AB|, b= |BC|, ¢ = |CD|and d = | DA|.

42, Let ABC 1) be a convex quadrilateral. T.et I be the point outside
ABCD such that |AP| = |PB| and LAPDB — 90°. The points @, R, S arc
similarly defined. Prove that the lines PR and QS are of equal length and
perpendicular.

43. Determine polynomials p(z,y,2,w) and ¢(z,y,z,w) with real
coeflicients such that

(43.0)  (zy+ 2+ w)’ (2 - 22)(3* - 2w)
= (P(za y,z,w))z - (z'2 - 2z)(q(1,y,z, w))2 .

44. Let C denote the field of complex numbers. Let f: C— Cbea
function satisfying

f(0)=0,
(44.0) { £(2) - f(w) = 17— ul,

for all zin C and w = 0,1,i. Prove that
f(z)=f(N)z or f(1)Z,
where |f(1)] = 1.

45. If z and y are rational numbers such that

(45.0) tanrz =y,
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prove that z = k/4 for some integer k not congruent to 2 (mod 1).

46.  Let P be a point inside the triangle ABC. Let AP moct BC at
D, BP weet CA at I5, and C£> meat AD at F. prove that

|[PA|PB. |PB||PC| |PC||PA| _ .
—- — = >12.

(16.0) rol1eE T iPEPE T PR PD)

47. Let 1 and n be positive integers such that
1<l<n, GCD(,n)y=1.
Define the integer & uniquely by
1<k<n, kl=-1(modn).
Let M be the k x I matrix whose (i, j)-th entry is
(i-Dl+3j.

Let N be the k x I matrix formed by taking the colunins of M in reverse order
and writing the entrics as the rows of ¥. What is the relationship between
the (1,7)-th entry of M and the (1,7)-th entry of ¥ modulo n?

48. Let m and n be integers such that 1 < m < n. Let a;, i =
1,2,...,m; j = 1,2,...,n, be mnn integers which are not all zero, and set
“= g, lel
1250
Prove that the system of equations

and) +a12z82+ -+ amn, =0,

(18.0) f"ﬂzl + a22z2 + -+ + azp ¥y =0,

1Ty + Qm2%2 + -+ + ATy =0,
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has a solution in integers zy,z2,...,Zy, not all zero, satislying

lz;] < [(‘271«)"\&] , 1<j<sn.

19. Liouville proved that. if

/I(:r): )y

is an elementary function, where f(z) and g(x) are rational functions with
degree of g(z) > 0, then

/f(z)t‘(’)dx = h(z)e?®) ,
where h(z) is a rational function. Use Liouville’s result to prove that

] e dr

is not an elementary function.

50. The sequence zg,2;,... is defined by the conditions
Tn + NTyy N
(50.0) 2o=0, zT)=1, Zyn = —ZW_I n>1.
Detennine

L= limz,.
NnN—+00

51. Prove that the only integers N > 3 with the following property:

(51.0) if 1 < k<N and GCD(k,N) =1 then k is prime,



14 PROBLEMS

N = 3,4,6,8,12,18,24,30 .

52. Find the sum of the infinite series

1.1 1. 1 1
S=1 —4- =
Lo+ 5t

CRETRVRAN

53. Semicircles are drawn externally to the sides of a given triangle.
The lengths of the common tangents to these semicircles are I, m, and n.
Relate the quantity

Im mn nl

n 1 T m
to the lengths of the sides of the triangle.
54. Determine all the functions H : R* — R having the properties
@) H(1,0,0,1)=1,
(¢8) H(Xa,b,Ac,d) = AH(a,b,c,d),
(ii) H(a,b,c,d)=-H(b,a,d,c),
(iv) H(a+eb,cr f,d)= H(a,b,c,d) + H(e,b, f,d),

where a,b,c,d, e, f,\ are real numbers.

55.  Let z,...,2, be the complex roots of the equation
M 4a2" ' 4. 4a,=0,
where ay,...,a, are n (> 1) complex numbers. Set

A= 1?:353‘,‘ lak] -
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Prove that
lZ;l <14+ A, j=12,...,n

56.  If m and n are positive integers with m odd, determine

d=GCDE2™ - 1,27 1)

57. If f(z) is a polynomial of degree 2m 4 1 with integral coeflicients
for which there are 2m r 1 integers ky,...,k2m41 such that

(57.0) f(k)=...= f(kamp1) =1,

prove that f(z) is not the product of two non-constant polynomials with
integral coeflicients.

58. Prove that there do not exist integers a,b,¢c,d (not all zero) such
that

(58.0) a® 4507 - 2¢* — 2ed— 3d2=0.

59. Prove that there exist infinitely mauy positive integers which are
not representable as sums of fewer than ten squares of odd natural numbers.

60. Evaluate the integral

o gin ks k
(60.0) I(k) = / ﬂ'“_‘ziﬂ dr
0

where k is a positive integer.
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61. Prove that

is an integer forn = 1,2,3,....

62. Find the sum of the infinite series
> 2"
R i .
"z;oa- + 1

where a > 1.

63. Let k be an integer. Prove that the formal power series
V1tkzr=1+a17 +az+...
has integral cocfficients if and only if k£ = 0 (mod 4).

64. Let m be a positive integer. Evaluate the determinant of the
m X m matrix My, whose (7,7)-th entry is GCD(4,7).

65. Let { and m be positive integers with ! odd and for which there
arc integers z and y with

I =224
m =z 482y 4+ 17y%

Prove that there do not exist integers u and » with

I =u? 42
(65.0) { m = 5u? + 16uv + 1302,
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66. Let

B 1 1 (-1)n!
a,,_l——2+3-—...+ n —In2.

Prove that 322, a,, converges and determine its sum.

67. et A = {a; | 0 <7< 6} be ascquence of seven integers satislying
0 ~-ap<ay<...<u5 <0l
For i=0,1,...,6 let
N; = number of a; (0 < j < 6) such that aj = 1.
Determine all sequences A such that

(67.0) Ni=¢e-;, i=0,1,...,6.

68. Let G be a finite group with identity e. If G contains elements g
and h such that

(68.0) g®=e, ghg™'=h2,

determine the order of h.

69.  Let a and b be positive integers such that
GCD(a,b)=1, a#b(mod?2).
If the set S has the following two properties:

(i) ab€S,
(#4) z,y,2€ Simpliessz+y+2€8,
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prove that every integer > 2ab belongs to S.

T70.  Provethat every integer can be expressed in the form z2+32—522,
where x,y, 2 are integers.

71. Ivaluate the sum of the infinite series

In2 In3 In4 E_."»

2 3 + | 5 +e-

72. Determine constants a,b and c such that

n—1 —
V= S VVak ¥ 0k § ck + 1 Vak® + k% + ok,
k=0

forn=1,2,....

73. Jet n be a positive integer and a,b integers such that
GCD(a,b,n)=1.
Prove that there exist integers a;, b, with

@) =a(modn), b =b(modn), GCD(a),b)=1.

74. For n = 1,2,... let $(n) denote the sum of the digits of 2". Thus,
for example, as 28 = 256 we have s(8) = 2+5+6 = 13. Determine all positive
integers n such that

(74.0) s(n)=s(n-+1).
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75. Evaluate the sum of the infinite series

had 1
S = E —_—
ooz, mn(m+n)

GCD(man: L

76. A cross-country racer runs a 10-mile race in 50 minutes. Prove
that somewherc along the course the racer ran 2 niles in exactly 10 minutes.

7. Let AB be alinc segment with midpoint O. Let R be a point on
ADB bhetween A and O. Three semicircles are constructed on the same side of
AB as follows: S, is the semicircle with centre O and radius|OA| = |OB}; Sz
is the semicircle with centre R and radius [AR|, meeting BB at C; S3 is the
semicircle with centre S (the midpoint of CB) aund radius |CS| = |SB|. The
common tangent to S7 and Sz touches S, at P and S3 at ). The perpendicular
to AD through C meets S; at D. Prove that PCQD is a rectangle.

78. Determine the inverse of the n X n matrix

011 ...1
101 ..1
(78.0) s=|110 L
111 ...0

where n > 2.

79.  Evaluate the sum

(79.0) S(n) = "}:“:(-1)" cos™(km/n),
k=0
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where n is a positive integer.

80.  Determine 2 x 2 matrices B and € with integral entries such that

-1 1 s e
(80.0) [ 0 -2 ] =B"+C".
81. Find two non-congruent similar triangles with sides of integral

length hawving the lengths of two sides of one triangle cqual to the lengths of
two sides of the other.

82. Let ¢,b,¢ be three rcal numbers with @ < b < c. The function
f(z) is continuous on (a,c] and differentiable on (a,c). The derivative f/(z)
is strictly increasing on (a,c). Prove that

(82.0) (c=b)f(a)+ (b—a)f(c) > (¢ - a)[(b).

83. The sequence {an, | m = 1,2,...} is such that am > a4 >
0,m=1,2,...,and 3, am converges. Prove that

o

Z ""(‘71:1 - am+l)

m=1

converges and determiine its sum.

84. The continued fraction of v/, where D is an odd nonsquare
integer > 5, has a period of length one. What is the length of the period of
the continued fraction of 1(1+ vDy?
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85. Let G be a group which has the following two properties:

(i) G has no element of order 2,
(ii) (ay)? = (yz)?, forallz,y€ G.

Prove that G is abelian.

(85.0)

86.  Let A = [a;;] be an 7 x n real symmetric matrix whose entries
satisfy
(86.0) ai=1, Zla‘jl <2,
i=1

forallt=1,2,...,n. Prove that 0 < det A <1.

87. Let R be a finite ring containing an element 7 which is not a
divisor of zero. Prove that R must have a multiplicative identity.

88. Set J, = {1,2,...,n}. For each non-empty subset S of J,, define
w(§)=maxS - min§.
3€S 3€S

Determine the average of w(S) over all non-empty subsets S of J,.

89. Prove that the number of odd binomial coefficients in cach row
of Pascal’s triangle is a power of 2.

90. From the n X n array

1 2 3 R 3
n+1 n+2 n+3 oo 2n
2n+1 2n+2 2n+3 oo 3n

(n=1n+1 (n-1m+2 (n—-1)n+3 ... n?
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a number z; is sclected. The row and colurn containing x, are then deleted.
From the resulting array a number z, is selected, and its row and column
deleted as before. The sclection is continued until only one number z,, remains
available for selection. Determine the sum z; 4 z4 4 - -+ 4 x,,.

91. Suppose that p X’s and ¢ O’s are placed on the circumference of
a circle. The number of occurrences of two adjacent X’s is @ and the number
of occurrences of two adjacent Qs is b. Determine a — b in terms ol p and q.

92. In the triangular array

1
111
12 3 2 1
(92.0) 13 6 7 6 3 1
1 4 10 16 19 16 10 4 1

every cutry (except the top 1) is the sum of the entry a immediately above it,
and the entries b and ¢ inmediately to the left and right of a. Absence of an
entry indicates zero. Prove that every row after the second row contains an
cntry which is even.

93. A sequence of u real numbers z,,...,, satisfies

(93.0) { @ =0,

[zi] = lzi-1 + ¢ (2Li< n),
where ¢ is a positive real number. Determine a lower bound for the average

of z;,...,%, as a function of ¢ only.

94. Prove that the polynomial

(94.0) f@=z"+2*+ 24245
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is irreducible over Z for n > 4.

95. Let ay,...,a, be n (> 4) distinct real numbers. Determine the
general solution of the system of n — 2 lincar equations

T4 T2t ot T, =0,
[V XTI BEERE A =0,
(95.0) a%z) | adan 4 4 ada, = 0,
&y ey + 6y 02y 4 4 Ay, =0,
in the n unknowns z,,...,%,.
96. Evaluate the sum
1 .
S(N) = z prowesl) N =23,....
1<m<ngN
m4n>N

GCD(m.r)=1

97. Evaluate the limit

(97.0) L= nli.oo " Z;; TR

98. Prove that

(98.0) tnﬁ-)zismi—:—\/ﬁ.
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99. lorn = 1,2,... let

PP W Gy
" 23 n’

Evaluate the sum
o

X Cn
S_Ln(u D

L )

100. For & > 1 determine the sum of the infinite serics

x 2 4

kd k4
it Ern@E D T i@ = n




THE HINTS

Still shrouded in the darkest night, we look lo the Fast with eapece-
tation: a hint of a bright neuw: day.

Aleksander Sergecvich Pushkin (1799-1837)

1. Let

(p-2)/2
N(k) = S o1, k=01..,p-1,

ig=1
ritn, =k (mod p)

and prove that
N(k)=N(1), k=12,...,p-1.

Next, evaluate N(0) and N(1), and then deduce the value of £(p) from

p-1
E(p) = Y_w*N(k).
k=0

2. Prove that

Nk =333 1,

where the variable z is summed from —k to k; the variable y is summed
from max(—k,z — k) to min(k,z + k); and the variable z is summed from
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max (—k,z — k,y — k) to min (k,z + k,y + k). Then express the triple sum as
the amm of six sums specified according to the relative sizes of 0,z and y.

3. First nse the fact that w2 = 1 (mod p) to prove that there are
integers @ and c such that p = «* 4 ¢*. Then let s and ¢ be integers such that
al --¢cs — 1. Prove that as + ¢t = fw (mod p), where f = +1, and deduce
that an integer ¢ can be found so that b (— « - ag) and d (— t — «g) satisly
ab+cd = fw,ad- be=1and b 4 d% - (w? +1)/p.

4. Prove that

i (di(n) — d3(n)) = i Z (_1)(4-")/2 ,

n=1 n=1 djn

d odd
and theu interchange the order of summation of the snms on the right side.

5. Rule out the possibilities z = 0 (mod 2) and z = 3 (mod 1) by
congruence considerations. If x = 1 (inod 4), prove that there is at least onc
prime p = 3 (mod 4) dividing z% — 3z + 9. Dednce that p divides z% + 27, and
then obtain a contradiction.

6. Use the identity

[z, ) f(z2,92) =
(122 + bz1y2 + bzoys + cyrye) + (ac = B)H(z13; — z231)?

together with simple inequalitics,

7. Prove that cxactly onc of the triples
(a,b,c) = (R,S,T), (T,-S+2T,R-S+T),(R—S+T,2R- S,R),

satisfics
albce, o a2b>c,
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by considering cascs depending upon the relative sizes of R, § and T.

8. Consider the sign of the diseriminant of

(aB — bA)z? + 2(aC — cA)zy + (bC — cB)y* .

9. Prove that the quantity

n o 2k ol
FLE T L

tends to zcro as n — 00.

10. Consider the case when n = p+1 and m = p, where p is a prime
suitably large compared with c.

11. Assume that 2D(D + A; A2 + €B113;) is a square, where ¢ = +1.
If D is odd, show that

D+ A1A2 + 6B|B2 = 2Dl/2 )
D - AjA; - BB, =2DV? |
A]Bg - €A2B] =2DUV

Deduce that U2 + V2 = 1. Then consider the four possibilitics (U, V) =
(£1,0), (0,%1). The case D even can be treated similarly.
12. Set
ag = \/1985+ 31V1985, 34 = \/3970 + 641985 ,

and prove that
apta.=fy, ay—a_=f5_.
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13. If (2, y) is a solution of (13.0), prove that
2?2 +ay—* =+F,
and then solve the system of equations
{ r2 + y?
z? 42zy +2y?

z2 + zy —y2

0}

k
Iv
Fv

wonon

+

for x2, zy and y2.

14.  Factor the left side of (14.0).

15. Make the following argument mathematically rigorous:

1
/ Inz In(1-z)dz
o

[}
|
=2
8
iMs
=8,
&
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16. Taking n =1,2,...,6 in (16.0), we obtain

a(l)= 1/2, a(2)=-1/3, «(3)= 1/4,
a(4) = -1/5, a(5)= 1/6, a(6)=-1/7.

"This suggests that a(n) = (—1)"*!/(n + 1), which can be proved by induction
on n.

17. Consider three cases according to the following values of the
Legendre symbol:
2 24k
n_iﬁ =1 or ((R_'H)_”'_) =1
P b4

(n2+k) _ ((n+l)2+k) -
) P o

In the third case, the identity

(02 +n+ k)2 +k = (24 k) ((n +1)2 +K)

is useful.
18. Rearrange the terms of the partial sum

i(l st )
n+1 4n+3 2m+2/)°

n=0

and then let N — oc.
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to prove that
m 2 m m m
Z('h) <15 a2+ 2Z(A—") —4y M
n=1 n n=1 n=1 n
‘I'hen use
~20,4, = (43 n l) —(A;:l - Al

to prove that
m

N gL N AL
—2 u<in S _ n .
nz=; n "L:; n(n + 1)
Putting these two incqualities together, dvduce that

s 2 A\ 2 >,
S(1-7m) (F) so e

n=1

20.  Usc the identity
D9 @)
¢eh 69) (&)

21. All integral solutions of az -+ by = k are given by
t=g+bt, y=h-at, t=0,41,42,...,

where (g, k) is a particular solution of ax + by = k.

22. Prove that

Ug = Vk—y — Uk, k=0,1,...,
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where
vy = ! k=-1,0,1
k= @+ F)d)--(a+ (k+ndyd’ TN e
23. Prove that thic stronger inequality
n s 2
P(Xy2, 00y e e eyt 1) < }:rf (z: r,)
k=1 " ks

holds by replacing each 2; by z; — M for suitable M — M(«x),...,2,) in
(23.0).

24. Apply the Cauchy-Schwarz inequality to

. 1
L%l\/ﬁ'—; .

n=1

25. Consider the integers (3m +2)2, m=1,2.....

26. Use the identity

1
arclan (l) = arctan ( ) — arctan (
n? n-1 n+1

), n=23,....

27. Suppose that g,(z) = h(z)k(z), where h(2:) and k(z) are non-
constant polynomials with integral coefficients. Show that h(x) and k(z)
can be taken to be positive for all real z, and that h(p;) = k(p) =1, i =
1,2,...,7n. Deduce that h(z) and k(z) are both of degrce n, and determine the
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form of both h(z) and k(z). Obtain a contradiction by equating appropriate
coefficients in gn(z) and h(z)k(z).

28. et p(k), k =0,1,..., denote the probability that A wins when
A has k dollars. Prove the recurrence relation

ap(k +2) — (a+b)p(k+ 1) + bp(k) = 0.

29. If zy,...,z, are the n roots of f(z), the 2n roots of f(x?) are -

£/, T, eee 2 fE

30.  Find a point P such that any two different lattice point must be
at different distances from P. Then consider the lattice points sequentially
according to their increasing distances from P.

31.  Determine the generating function

3 Syt

n=0

32. As f(z) is bounded on (0,a) there exists a positive constant K
such that
If(z)l< K, 0<z<a.

Use (32.0) to deduce successively that

Ifz) < K/n, O0<z<a,
1fz) < K[n?, 0<z<a,

etc .
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33. Consider the derivative of the function

_(n —y)(ya-2)
@)= = w)w =2

34. Set a; = 1. Prove the recurrence relation
Qpy) = A1Gn + @2Qn_) + -+ + Qu-yaz + a0y,

and use it to show that the generating function A(z) = Y 0, a, 2" satisfics
A(2)? = A(z) - z. Then solve for A(z).

35. Use }.’Hopital’s rule, or use the inequality

t<tant<t+£, o0<t<1,

to estimate the integral [ tan(ysin z) dz.

36. Use a result due to Hurwitz, namely, if € is an irrational number,

there are infinitely many rational numbers a/b with b > 0 and GCD(a,b) = 1
such that

16 - afb] < 1/(VBb?).

37.  Differentiate (37.0) with respect to z and y to obtain

1+ 23 (z) = 1+ ) (v) -
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38.  Introduce a coordinate system and use simple inequalities to show
that max § = 4R and min 5 = 2R, where R is the radivs of the circle.

39. Prove that

and
o0

N (U .l,.M) . XuY,
k=1

n=

where

X-{0,24,...}, ¥={0,36,...}.

40. Prove that

0 ’OS’CS"-I»
=48 P Lk=n,
" n+1<k< 2,

and

k—n—1
Pk = (1— 3 p;)qp", k>,
i=0

Use these to find a lincar equation satisfied by P(z).

41. First prove that the circumradius of a triangle with sides of length
I, m and 2 is given by

lmn
Vit man)i+m—-n)iZm+a)(-l+m+n)

Next show that
|AC| = ’i“L‘“ bd)(ad + be)
(ab + cd) ’
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Finally, apply the above two results to AARC.

42. Consider the quadrilateral ABCD as lying in the complex plane.
Represent the vertices A, B,¢, 1) by the complex nunibers a,b,c,d respec-
tively. Prove that P,Q, R, S are represented by the numbers

17 (@ + ib), ( Lg") (b+ic)
(e +2d), ('—“—') (d + ia),

respectively. Then welate p rand ¢ s

I
2

43.  Try a solution of the form
p=ry+X, g¢=y+Y,

where X and Y are polynomials in #,w and 2. Substitute in (43.0) and solve
the resulting equations for X and ¥'.

44. Scta = f(1)and = f(i). Prove thatla| = 16l = 1, |«—f] = V2.
Deduce that 2 + 82 = 0 so that 8 = ea, € = +i. Next from (44.0) deduce

that .
{ af(2)+ef(z) =2+7,

af(z)~ af(z) = —ciz+eiZ.

Now solve for f(z).

45. Let z be a rational number such that ¥ = tan7z is rational.
Prove that z = 2cos 2z is a rational root of a monic polynomial with integral
coeffirients. Deduce that z = 0,41, +2.

46.  Iet 5,5, 9 denote the arcas of APBC,APCA, APAB respec-
tively. Prove that
IPA_ S24 S3
IPD| ~ 85
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with similar expressions for H and {-‘-:%Il

47. Prove that the (#,7)-th entry of N is I times the (4,7)-th entry of
M modulo n.

48. ‘There are (N + 1)" vectors (y1,¥2,...,yn) of integers satisfying
0 <y; <N, 1< j < n. Vor each of these vectors the corresponding value of
Li = Li(y1,925--59n) = @19 + -+ + @iy, 1 < i<,

satisfies —naN < L; < naN, so the vector (Ly, Lz,...,1 ) of integers can
take on at most (2nalN + 1)™ different values. Choose N appropriately and
apply Dirichlet’s box principle.

49. Suppose that [e~*’dz is an elementary function, so that by
Liouville’s result, there is a rational function p(z)/g(z), where p(z) and ¢(z)
are polynomials with no common factor, such that

2 p(z)
/e dz = ‘—K;)-e

Differentiate both sides to obtain
?'(2)a(z) - p(2)g'(2) - 22p(2z)g(z) = o(2)?,

and deduce that ¢g(z) is a nonconstant polynomial. Let c denote one of the
complex roots of g(z) and obtain a contradiction by expressing ¢(z) in the
forn ¢(z) = (z — ¢)™r(z), with r(x) not divisible by (z — c).

50. Prove that
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51. Let px denote the k-th prime. Suppose that N > 121 is an integer
with the property (51.0). Let p,, be the largest prime less than or equal to }17 ,
so that n > 5, and NV < p2,,. Use property (51.0) to obtain the inequality
N > p1p2-- - pu. Then use Bertrand’s postulate
Pre1 < 2px, k= 1,2,...
to obtain
PPz Pr-2<8

from the inequality pipz---pn < p24;- Deduce the contradiction n < 4.
Check property (51.0) for the integers N — 3,4,...,121 directly.

52. Prove that

/' 224241
= — =TT 4z
o 244284224241

and then use partial fractions to evaluate the integral.

53.  Let |AB| =2c, |BC| = 2a, |CA| = 2b. Show that

I=yf(a=b+c)a+b-c)

with similar expressions for m and n.

54. Evaluate

H(1,1,0,0), H(0,0,1,1),
H(0,1’170) ’ H(l,o,oll) ,

using (¢) and (#ii). Then express H(a,b,c,d) in terms of these quantities by
means of (i), (it),(¢i¢) and (iv).

85.  Set f(z) = 2" +a;2" ' +---+ a6, and note that for z # 0 we have

1f(z)} = |2" (1+.“zl+...+ g—:)
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) ay a
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56. Define integers & and 1 by
2" —-1=kd, 2"+1=1d,

and then consider
2™ = (kd+1)" - (Id—1)".

57. Suppose that f(z) = g(z)h(2), where g(z) and h(z) are noncon-
stant polynomials with integral coefficients chosen so that

deg (9()) < deg (h(=)).

Deduce that deg(g(z)) < m and that g(k,) = +1, i = 1,2,...,2m + 1. Let
¢ = 41 (resp. —1) if 41 (resp. ~1) ocenrs at least m + 1 times among
the values g(k;) = %1, i = 1,2,...,2m + 1. Then consider the polynomial
g(z)-c

58. Suppose a,b, ¢, d are integers, not all zero, satisfying (58.0). Show
that without loss of generality a,b,c,d may be taken to satisfy
GCD(a,b,e,d)=1.
By considering (58.0) modulo 5 prove that

as=b=c=d=0(mod5).
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59. Consider the integers 72k + 42, k = 0,1,... .

60.  Use the identity

k
k
9k gin ks .k__E dn2ra .
SINAT CO8™ T (1‘) Sth 27y

61.  Express

1 2n
n+1\n
as the difference of two binomial coefficients.

62.  Use the identity

on B on ont+l
@41 -1 @' -1’

a>1.

63. Prove that

—9( n-l_!_ 2n -2 (E)n
4 =2(-1) n('n—l 4

and appeal 1o Problem 61.

64. Let C1,Cy,...,Cpm denote the columns of M,,. Determine a
linear combination of Cy,Ca,...,Cp-1 which when added to C,, gives the
column (0,0,...,¢(m))!. Deduce that det M,, = ¢(m) det M,,_,.
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65. Assume (65.0) holds and use congruences modulo 8 to obtain a
contradiction.

66.  Prove that

1 (__] )n-—lxn
= . )
W /0 14+ z

and usc this representation of a, to deduce that

N
2 o - / (l+a¢)2

n=1

1\+2

67. Let A be a sequence of the required type, and let & denote
the number of zeros in A. TFirst prove that k¥ = 3. Deduce that A =
{0,0,0,a3,0a4,05,3}, where 1 < a3 < a4 < a5 < 3. Then prove that N; = 2.

68. Prove that

g hg™" =h¥, n=1,2,...,5.

69. Prove that every integer N > 2ab is of the form
N=za+yb, 220, y20, z+y=1(mod?2),

and that all integers of this form belong to S.

70. If m is cven, say m = 2n, show that

m = (an+ b)? + (cn + d)* — 5(en + f)*
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for suitable constants a,b,..., f. The case m odd is treated similarly.

71. Note that

In2 103 In4 In2n
2 3 4 2n . )
. ] 1 < In ~Ink
=|n£(112+'~'+;)12‘ Tt el

k=1 k=1

and estimate Yy, (lnk)/k for lurge n using the Fuler-Mad Lanrin summation
formula.

72. Express (VE+ 1 — vk)3 in the form /p(k) + 1 — \/p(k), where
p(k) is a cubic polynomial in k.

73. Choose a; to be any nonzero integer such that a¢; = a (mod n).
Then set by = b 4+ rn, where 7 is the product of those primes which divide a,
but do not divide either b or n. Prove that GCD(a,,b,) = 1.

74. Prove that s(n 4 1) = 2s(n) (mod 3), and use this conguence to
show that there are no positive integers n satisfying s(n) = s(n + 1).

75.  Show that

Lo

5= Z mn(7n+n st

mmn=1

by collecting together those m,n in the sum A = "2 _, 1/(mn(m + n))
having the same value for C D(m,n). Then evaluate the sum A by proving
that it is equal to the integral

/‘ In%(1 - z) dn
) z ’
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which can be evaluated by means of the transforination z = 1 —e™¥.

76. Apply the intermediate value theorem to the function T'(x) de-
fined to be the time taken in minutes by the racer to run from the point =
miles along the course to the point & 4 2 miles aloug the course.

77. Choose a coordinate system so that
A=(-1,0), O0=1(0,0), B-=(1,0).
Then R = (—a,0) with 0 < a < 1. Deduce that

C=(1-2q0),
S=(1-a,0),

D =(1-2a,2\/u(1 - a)) ,
P = (2a? - 4a + 1,21 - a)\/a(1 —-n;) ,
Q = (1-20%20//a(1 - 9)) ,

and calculate the slopes of PC, PD, QC and QD.

78. Let I denote the n X n identity matrix. Set U = S+ I. Prove
that /2 = al/. Seck an inverse of S of the form cl/ — I.

79. Replace cos(kw/n) by (w* + w™*)/2, where w = exp(7i/n), and
use the binomnial theorem.

80. letA= [ o s ] and show that A3 + 342 4 24 = 0. Then
consider (A4 + I)3.

81. Let the sides of the triangles be a, b, ¢ and b, ¢,d. The two triangles
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are siinilar if /b = b/c = ¢/d. Choose positive integers to satisfy this relation
remembering that the triangle inequalities ¢ < a + b, etc must be satisfied.

82. Apply the mean value theoren to f(+) on the intervals (a,b) and
(b.c).
83. First show that lini, . na,, — 0. Then let » -+ o in

n "
Xk(ak - Gk41) = E_:ak na, 41 -
k=1 k=1

84. Use the fact that the length of the period of the continued fraction
of V/D is one, and that D is an odd nonsquare integer > 5, to show that
D = 4c% + 1, ¢ > 2. 'Then detcrmine the continued fraction of (1 + VD).

85.  Tor z,y € G prove that (zy=~1y~ )2 = 1.

86. Let A denote one of the eigenvalues of A and let a be a nonzero
cigenvector of A corresponding to A. By applying simple inequalities to an
appropriate row of Az = Az, deduce that |A— 1] < 1. Then use the fact that
A is real synunetric and the relationship between det A and the eigenvalues
of A.

87. Show that there exists an integer k > 2 such that 7 = 7*. Then
prove that 7%~ is a multiplicative identity for R.

88. For 1 < k <1 < nlet S(k,l) denote the sct of subsets of J,,
with minges § = k and max,es S = I. Evaluate |S(k,1)| and then compute
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Y egsca, w(S) vsing

$£SCIn 1<k<I<n

89.  Write n in binary notation, say,
n=2%"424...42%,
where ay,...,ax are integers such that a; > a; > -+ > ax > 0, and then use

(1+2)* 1+ 2% (mod?2),
1+2)" A +2)*Q+2)**-.-(1+2)*™.

90. Suppose that z;, 1 < ¢ < n belongs to the r;-th row and the s;-th
column. Show that

n n . n

Z:c.- = ani - n? + Zs;,
i=1 =1 =1

and then use the fact that both {ry,...,r,} and {s,...,8, } are permuta-

tions of {1,2,...,n}.

91. Let Nzz, Nz,, Noz, Noo denote the number of occurrences of XX,
X0, 0X, OO respectively. Relate Nyz, Nzo, Noz, Noo to a,b,p,q. Prove that
Noz = N0, and deduce the value of a — b in terms of p and g.

92. Consider the entries of the triangular array modulo 2. Show that
the pattern
01
0

L
O - O
OO -
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is repeated down the left edge of the array from the fourth row down.

93. Let 2,4, be any real number such that |z,41| = |z + ¢|, and
consider 374! 22,

94.  If we have f(z) = g(z)h(z) then without loss of generality g(0) =
11, 1(0) = £5. Prove that one of the complex roots § of g(z) satisfics | 5| < 1,
and then deduce that |f(B8)] > 1.

95.  Set

f(z)=(z~a1)(z—a2): - (z —a,).

Prove that

(i) = (o7

f(a1)’""" fan) @) fan)

are two solutions of (95.0). Deduce the general solution of (95.0) from these
two solutions.

96. By picking out the terms with n = N in the sum s(V), show that
3(N)=3s(N-1)for N >3.

97. Prove that

L= [ [ 5 dza
—/(; /o aZyy
and evaluate the double integral using polar coordinates.

98. For convenience set p = /11, and let ¢ = cosp, s = sinp. Use
the imaginary part of
(c+ i) = -1,
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to prove that )
(11s — 44s®* 4 325%)° = 11c4(1 - 4s%)> .

Then show that

11s — 445% 4 3255
tan3p+ 4sin2p = _lc(T—sti?T_ = £V11.

Deduce that the + sign holds by cousidering the sign of the left side.

99, Use partial sumination aud the fact that limg_,o (cx — In k) ex-
ists.

100.  Use the identity
1 z?"

(z = 1) (2 4+ 1)(=2 1)z +1)--- (27" + 1)
o 1 1

= (12..41_]) = 22" 1 - 1_2,,,“_1 .
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Some people think we are wrong, but only time will tell: grven all
the alternatives, we have the solution.

Lev Davydovich Bronstein Trotsky (1879-1940)

1. Let p denote an odd prime and set w = exp(27i/p). Evaluate the
product

(1.0)  E(p) = (W +w™? + .. 4w e-02) (W™ 4 W™ 4L WD),

where 71,...,r(;-1)/2 denote the (p = 1)/2 quadratic residucs modulo p and
Ny oy Np—1)/2 denote the (p — 1)/2 guadratic nonresidues modulo p.

Solution: We set ¢ = (p~1)/2 and

1) (:{o, if p=1 (mod 4),

1, if p=3 (mod4),

and for k = 0,1,...,p—1let

9
(1.2) N(k)= > o1
1,J=1
ritn, =k (mod p)
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If k is a quadratic residue (resp. nonresidue) (mod p) {kr; : i = 1,2,...,q}
is a complete system of quadratic residues (resp. nonresidues) (mod p) and
{kn; : § = 1,2,...,q} is a complete system of quadratic nonresidues (resp.
residues) (mod p). Replacing r; by kr, and n; by kn, in (1.2), where 1 < k <
p — 1, we obtain

(1.3) N(k)= NQ1), k—1,2,....p—1.

Next, we note that

(1.4) N(0) = Eq: 1 =e,
1,3=1

ri=-n, (mod p)

as —1 is a quadratic residue (mod p) for p = 1 (mod 4) and —1 is a quadratic
nonresidue (mod p) for p = 3 (mod 4). Now as

(15) Trm=S1=¢,
k=0 Q=1
we obtain, from (1.3), (1.4), and (1.5),
€q +2qN(1) = ¢,
that is
(16) N(1) = (g- /2.

Finally, we have

E(p)

n
=
g

€

-y
~—
N
i
€
3
——
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p-1 q
= Z 2 Wwritn;
k=0 ig=1
ri4n;=k (mod p)
r-1
= S AN
k=0
— N EN(Ywtw e bwP )
N(©) N(1)
= eg—(g- )f2, by (L4)and (L6),
that is
E(p) = (1-p)/4, if p=1 (mod4),
PY=1 ()4, if p=3 (mod 4),
as required.

2. Let k denote a positive integer. Determine the number N (k) of
triples (z,y,z) of integers satisfying

) le~yl <k, ly—2z|<k, |z—z|<k.

Solution: The required number N (k) of triples is given by

Nk = > b S
l=l<k i<k lzl<k
le-yI<k  ly—2l<k
|z—=|<k
k k k
=X X XL
r=-k v==k 2=—k

x-k<y<r+k  z—k<zlztk
y-k<z<y+k
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that is

k
(21) NR=Y Y YL,
=k v z
where the second sum is taken over y = max (—k,x —~ k) to y = min (k.z +k),
and the third sum is taken over 2 = max(—k,x — k,y — k) to z = min (k,z +
k,y+ k). We now split the sum on the right of (2.1) into six sums Si...., Se,
where & and y are restricted as follows:

0<z<y. in &:
r<0<y, in S;
z2<y<0, in S3;
0<y<az, in Si;
y<0<az, in Ss;
y<z<0, in Sg.

Clearly, we have

k 3 k
S =2 Y Y
z= y=&r =y-k
k k
= Y Y(@k+1-y)
r=0 y=z
1k
= 5§(k+l—z)(3k+2—x)

k
= % Z((L +1)(3k + 2) ~ (4k + 3)x + z?)

z=0)

- %((H 1)%(3k +2) -

(4k 4+ 3)k(k +1)  k(k +1)(2k+ 1)
2 + 6 )

1
Similarly, with E denoting k(k + 1)(2k + 1)/3, we obtain
-1 r+k x4k

$1= 3 ) X1 =B,

r==k y=0 2=y-k
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-1 r+k
=3 S ¥ o=k
z=—k V=T 2=-k
k k
Ny = L Z Z 1 =L,
y=0 ==z-k
k vtk

Se, X ): >or =k,
y=z-k z=c-k

-1 -1 utk

5(; = >_; z Z 1 .= é(k - l)k(‘”u 4- l) .

r=—k4t  y=-k 2=—k

Thus we have

N(k)

Sy + 52+ ---+ S

4
= %(k+ D(k+ 2)(Ak +3) + k(K + D(2k+1)
+%(k— 1)k(4k + 1)

= 4kS 4 6k 4+ 4k 41
= (k+1) -k,

3. Let p = 1 (mod 4) be prime. It is known that there exists a unique
integer w = w(p) such that

w?=~1 (modp), 0<w<p/2

(For example, w(5) = 2,w(13) = 5.) Prove that there exist integers a,b,c,d
with ad — be = 1 such that

(0? +1)

pX2+ 20wXY + ——Y?% = (aX +bY)2 + (cX +dY)%

(For example, when p = 5 we have

5X24+4XY +Y2= X2+ (2X + Y)?,
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and when p = 13 we have

13X2410XY +2Y2= (3X + Y2+ (2X + Y)2)

Solution: We make use of the following property of the reals: if r is any real
number, and = is a positive integer, then there exists a rational
number h/k such that

(3.1) 1<k<n, GCD(hk)=1.

, E|<_1__
k[~ k(n+1)’ -0 =

Taking r = —w(p)/p and n = [\/p], we see that there are integers a and e
such that

(32) I———"‘;f”) -2

1
<—=, 1<a< .
a\/p vP
Setting ¢ = w(p)a+pe, we see from (3.2) that || < \/p,and 500 < a+c* < 2p.
But ¢ = wa (miod p), and so0 a? + ¢ = a*(1 + w?) = 0 (mod p), showing
that

(3.3) p= a? + .

As p is a prime, we see from (3.3) that GCD(a,c) = 1. Hence, we can choose
integers s and ¢ such that

(3.4) at—cs=1.

Hence
(as+ ct — w)(as + ct + w)
(as + ct)? — w?
(a? + c?)(s? + t2) - (at — cs)® — w?
p(s? +1%) - (1 + v?)
0 (modp),

so that

(3.5) as+ct=fw (modp), f=4=1.
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Hence there is an integer g such that

(3.6) as+ct= fw+gp.
Set
3.7) b=s—ag, d=t-cg.

Then, by (3.3), (3.4), (3.6), and (3.7), we have
(3.8) ab+cd= fw, ad—bc=1.

We now obtain

PP +d%) = (a®+A) (b +d?)
= (ab+ cd)? + (ad - bc)?
w? +1,
50 that
(3.9) b +d2=(w?+1)/p.

Then, from (3.3), (3.8), and (3.9), we have

2 2 2 (w?+1),
(3.10) (aX +bY)* + (cX +dY)’ = pX* + 2fwXY + ——p——Y
If f = 1 then (3.10) is the required identity. If f = —1, replace b,c,Y by
-b, ~c,—Y respectively to obtain the desired result.

4, Let d,(n), r = 0,1,2,3, denote the number of positive integral
divisors of # which are of the form 4k + 7. Let m denote a positive integer.
Prove that

(4.0) E(dl(n) ds(n)) = z(_ y [2,7 +1]

n=1
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Solution: We have
m

i(dl(n) ~ d3(n)) 2 z (_1)(d—|)/2

n=1 n=1 dfn
d odd

= z Z (_4)(‘1-1)/2

dodd  V<ikIm

TR S G ) VUL S

dodd 1<h<mfd

- s cpen[]

dol.:id
= e 53]

This completes the proof of (4.0).

5. Prove that the cquation
(5.0) y¥=2"+23

has no solutions in integers x and y.

Solution: Suppose that (z,y) is a solution of (5.0) in integers. If z =

0 (mod 2) then (5.0) gives % = 3 (mod 4), which is impossible.
Hence, we must have z = 1 (mod 2). If z = 3 (1nod 4) then (5.0) gives
3?2 = 2 (mod 4), which is impossible. Hence, we see that z = ] (mod 4). In
this case we have x2 —32+9 =3 (mod 4), and so there is at least one prime
p = 3 (mod 4) dividing #2 — 3z + 9. Since z? — 3z + 9 is a factor of 23 + 27,
we have 23 + 27 = 0 (mnod p). Thus by (5.0) we have y? = —4 (mod p).
This congruence is insolvable as —4 is not a quadratic residue for any prime
P = 3 (mod 4), showing that (5.0) has no solutions in integers z and y.

6. Let f(z,y) = az?+2bzy+cy? be a positive-definite quadratic form.
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Prove that
(f(zl,yl)f(zz,yz))mf(xl - Z2,% - %)
(6.0)
> (ac - B2 )z 42 — z2m1)%,

for all real numbers xy, 22, Y1, Y-

Solution: First we note that ac b2 > 0 as f is positive-definite. We use
the identity

(az? + 2b7y 91 + cy¥)(azd + 2bxay, + cy3) =
(6.1)
(azy22 + bryyz + broys + cnin)? + (ac - b2)(z132 - Tam )2
Set
E, = f(x1,1n) 20, E2= f(z2,92) 20,
F = |u1-|x2 + bzyy2 + bz + Cy|_1[2| >0,

and then (6.1) becomes

(6.2) EyEy = F2 4 (ac - b%)(x192 — 72 )%
We also have

(6.3) f(z2y — 22,9 - y2) = By + E2 £ 2F.
Hence, using (6.2) and (6.3), we obtain

(f(@n9)f(22,92))"2 f(21 = 22,50 — 12)
(EVE2)YY(Ey + Ey — 2F)
(E1E)VH2(E, E)V? - 2F)
2Ey Ep) - 2B Ez)V2F
2F? 4 2(ac — b?)(z12 — 231 )?
—QF(FZ + (GC - b2)(z|y2 - 12y1)2)'/2
2F2 + 2(ac - b2)(2’|y2 - Izy|)2

1/2
(ac = b*)(z1y2 — o1 )?
-2F? (1 + 72

I nviv
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v

2F% + 2(ac — b¥)(z1y2 - z2y1)?

_op2 (ac bz)(ftl;'lz—-‘t:yl)z
2F 11+ oF?

= (ec B)arge - xam)?

‘T'his completes the proof of (6.0).

7. Lot R,5,T be three real numbers, not all the same. Give a condi-
tion which is satisfied by one and only one of the three triples

(R,S5,T),
(7.0) (1,-S+2T,R-S+T),
(R- S+ T2k - S,R).

Solution: We let (q¢,b,¢) denote any one of the triples in (7.0) and show
that exactly one of the three triples satisfies

(7.1 (!) a<b<ec or (i7) a>b>c.

We consider six cases.
Case (i): R<S<T. Here(a,b,c)=(R,S,T) satisfies (7.1)(i) but not
(7.1)(ii), while the other two triples satisfy neither (7.1)(i) nor (ii) as

T<-S+2T, -S+2T>R-S5+T

and
R-S+T>20-S5, 2R-S<R.

Case (ii): R<T <S. Here(a,b,c)=(T,—-5+21.R - S+ T) satisfies
(7.1)(i1) but not (7.1)(i), while the other two triples satisfy neither (7.1)(i) nor
(ii) as

R<S, S>T

and
R-S4+T>2R-S, 2R-S<R.
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Case (ill): S<R<T. Tere(a,b,c)=(R~ S+ T,21 — S. R) satisfies
(7.1)(ii) but not (7.1)(i), while the other two triples satisfy neither (7.1)(i) nor
(ii) as

R>8 S<T
and

T<-S+2T, -S+2T>R-S+T.

Case (iv): S <T < R. Here (,b,¢) = (1.-5 421 R - S +7T) salislics
(7.1)(i) but aot (7.1)(ii), while the other two triples satisly neither (7.1)(3) nor
(i) as

R>S, S<T
and

R-S+T<2R-S, 2R-S>R.

Case (v): T"< R< S. Here (a,b,c) = (R— S+ T,2R — S, R) satislies
(7.1)(i) but not (7.1)(ii), while the other two triples satisfy neither (7.1)(i) nor
(ii) as

R<S, S>T

and

T>-S+2T, -S+2T<R-S+T.

Case(vi): T <S <R llere (a,b.c) = (R,S,T) satisfies (7.1)(ii) but not
(7.1)(i), while the other two triples satisfy neither (7.1)(i) nor (ii) as

T>-S+2T, -S+2T<R-S+T

and
R-S+T<2R~S, 2R-S>R.

8.  Let az? + bzy + cy? and Az? 4+ Bzy + Cy? be two positive-definite
quadratic forins, which are not proportional. Prove that the form

(8.0) (aB — bA)z? + 2(aC — cA)zy + (bC — cB)y®

is indefinite.
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Solution:  As «x? + bzy + cy? and Az? 4 Bzy 4 ('y? are positive-definite
we have

a>0, ¢>0, b®-4ac<0,
AS0, C>0, B2-4AC<0.

To show that the form
(a3 - bA)x* 4 2{aC - cA)ry + (bC — eB)y*
is indefinite we must show that its diseriminant
D = 4(aC - cA)? ~ 4(aB - bA)BC - c})
is positive. We first show that D > 0. This follows as
a®D = (2e(aC’ — cA) - b(aB — bA))? - (b - dac)(a B — bA)®.
Morcover, I) > () unless
aB~-bA=aC-cA=0

in which case
a b c

A B
This does not occur as az? + bzy + cy? and Az? + Bzy+ Cy? arc not propor-
tional.

9. FEvalunate the limit

Lo N2k
(9.0) L= ,.ll.n;, o -

Solution: We show that I, = 2. For n > 3 we have

n o 2k n =t on-k

2~“k=|7:_ - M-k
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3
!

n
n—k

R

x
=]

3

1 k
= k(1+;fk)

N

kol
<

s

n—

~ &

"Z“ k
+ 5% o\ )
k=1 2‘(,1 - A)

“i—I -

and so
n 2k n-1 1

lnzk ZT

k:(l

s k
= Z 1 2k(n - k)l

n-1 k
& 7o

k

IN

2(7: - l) Z (k2 k)(n—k)

’(n—l)+z(k—l)(n 3)
1

= f(T_T,'*;_—lE(m+
1 2 'IZI

2(11—1) n—lz_

1 ., 2

2(n—l)+'n—l

IA

Inn.

As n — 400, :;(n—l_‘l')'f- (,ﬁ—,)lnn — 0 and so

1
n—k)
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10. Prove that there does not exist a constant ¢ > 1 such that
(10.0) n°¢(n) > me(m),
for all positive integers n and m satisfying n > m.
Solution:  Suppose there exists a coustant ¢ > 1 such that (10.0) holds for

all positive integers m and n satisfying n > m. Let p be a prime
with p ~ {e. Then, we have

3 p+1

= > >

12 3.1 (asp>4c> 1)
s #Aptl)

o) (asdp+ 1) < (p+1)/2, $(p) =p—1)

p 4
> (= by (10.0
> (GB) ey ooy

1 c

- (Mp-{.l)
> 1-;_%—] (using 2 — 1> ¢(x - 1), z > 0)
> 1-<

p

3

> 7 (as p > 4c),

which is impossible, and no such c exists.

11. Let D be a squarefree integer greater than 1 for which there exist
positive integers A;, Az, By, B, such that

(11.0) D= A?+B? =A}+BE,
) (AI’BI) #(A%Ih)'

Prove that neither
2D(D + A Ag + Ble)
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nor
2D(D + AyA; - B1B2)

is the square of an integer.

Solution: Suppose that 2D(D + A1 Az + €B,B2) = X2, where X is an
integer and ¢ = 1 1. We consider two cases according as D is odd
or cven.
If 17 is odd, as it is squarcfree, 20 divides X, say X = 200", where I/ is
an integer, and so

(11.1) D+ Ay Az + BB, = 2DU? .

Next we have

2D(02 - (A1A2 + €B1 B,)?)
D+ AA2+ €B\ B,
2D(A11?2— (Azl}_ﬂz
D+ A]Az -+ 63132 ?

]

2D(D - A]Az - (Blnz)

that is

A1 B, - (Azl?l 2
=)

Since the left side of (11.2) is an integer and the right side is the square of

a rational number, the right side of (11.2) must in fact be the square of an
integer. Hence, there is an integer Z such that

(11.2) 2D(D - AyAz - eB1B2) = (

(11.3) 2D(D - A1 Ay — eByBy) = 72,

(11.4) A\B2—-€A2B1=UZ.

From (11.3), as above, we see that 2D divides Z, so there exists V such that
Z = 2DV. Then (11.3) and (11.4) become

(11.5) D - AjA; — €B By = 2DV?
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(11.6) A\By ~ €A B, = 2DUV .

Adding (11.1) and (11.5) we obtain 2D = 2DU2+2DV?2, 50 that {Z24+V? = 1,
giving

(1.7 (,V) = (£1.0) or (0,41).
Now from (11.1), (11.5) and (11.6), we have

G A + B, = D2 V?),
—3h A+ A By = 2DUV.

Solving these equations for Az and B, gives
(118) A= (U2 =V?)A, =2V Dy, By=2WVA +eU?-V)B.

Using, the values for (7, V) given in (11.7), we obtain from (11.8) (Az, B;) =
4:(Ay, €B,), which is clearly impossible as Ay, A2, By, B, are positive and
(A1, By) # (A2, Be).

The case when D is even can be treated similarly.

12. TLel Q and R denote the fields of rational and real numbers
respectively. Let K and L be the smallest subfields of R which contain both
Q and the real numbers

19854 311985 and 1/3970 + 641985,

respectively. Prove that K = L.

Solution: We set

) o4 = /1985 + 31,/T085 = 58.018,
a_ = \/ 1985 — 314/1985 =~ 24.573,

) 3, = /3970 + 64,/1985 ~ 82.591,
(12:2) 64v/1985
f- = \/3970 — 64/1085 ~ 33.445.
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It is casy to check that

apa_ =32/1985, 84.6_ = 62,/1985 .

(12.3)

(12.4)

{ (4 + a_)? - 3970 + 64V/T985

(ay -

from which we obtain

(12.5)

oy o

«.)? = 3970 - 641983 ,

_‘—‘,"3.}_. 6y —a. =4

Writing Q(71,-...7n) for the smallest subficld of R containing both Q and
the real numbers 71,...,7n, we have

Qo)

[T L 2 T T T O 1 R

Q(o'}-v"z )

Qs JI9) (hy (12.1))
Q(ay,a-)  (by (12.3))
Qa4 +a-)

Q(B4) (by (12.5))
Q(ﬁi—vﬁ%—)

Q(84,v1985) (by (12.2))
Q(fy,5-) (by (12.3))
Q(By +48-)

Qlay), (by (12.5))

so that K = Q(ay) = Q(84) = L.

13.

and

Let k and [ be positive integers such that

GCD(k,5) = GCD(L,5) = GCD(k,1) = 1

—k? 4 3kl —1?

= F?, wherc GCD(F,5)=1.

Prove that the pair of cquations

(13.0)

{

k=212 492
1= 22 4 22y 4+ 242,



64 SOLUTIONS

has exactly two solutions in integers 2 aund y.

Solution: We have
F? — Ak 4 8kl + 412 = 4(k + 1) (mod 5)

so that F = £2(k+ 1) (mod 5). Replacing IF by — I, if necessary, we may
suppose that

(13.1) F -2k 41 (mod 5)

Then we have

4k—-1-2F = 0 (mod}5),
(13.7) --3k+20—-F = 0 (mod5),
k+l+2F = 0 (mod 5),

and we may define integers R, 5,7 by

5R = 4k—1-2F,
(13.9) 56 = -3k+2l-F,
51 = k+1+2F.

Iurther, we have

25(RT — $%) (4k =1 = 2F)(k + 1 + 2F) = (-3k + 21 — F)?
—5k? + 15kl — 512 — 812

0,

so that
(13.4) RT = §%.
We now treat three cases:
(YR=S=0, (I)R#0,5=0, (iii)S#0.

Case (i): R =5 =0. From (13.3) we have 4k — | - 2" = 0, and —3k +
20—~ F =0,s0 that k = F,l = 2F. But k,l are positive coprime integers, so
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P =1,k =1,l=2.Tn this case (13.0) has two solutions (z,y) = +(0,1).
Case (ii): R # 0,9 =0. [rom (13.4) we have 7" = 0, and so from (13.3)
we obtain

k+i42r = 0,

sothat k =1 = - F. As k,l are positive coprime integers we have I = —1,k =
! = L. In this case (13.0) has two solwtions (z, ) = £(),0).

Case(iii): 5 # 0. From (13.4) we have RT > 0. If R < 0 then 7" < 0 and
we have k= R4+ T < 0, conuadicting /2 > 1. llence K and 1" are positive
integers. Next, observe that

{ -3k+20-F - 0,

(k= 1 — 21 (dk — 1 4 2F) = (4k - D? = 457 = 5(1 - 2k)?,
so that
(13.5) R(dk =1+ 2F) = (I - 2k)* .

Clearly, we have 4k — I + 2F # 0, otherwise 5 — —4F and so 5 | ¥, con-
tradicting GCD(F,5) = 1. Hence we may define nonnegative integers a,b,¢
by

(13.6) 2| R, 2P| ak—142F, 2|1-2k.

We have from (13.5) and (13.6)

(13.7) a+b=2c
and

R 4k-142F 1~ 2k\2
(13.8) 5;—-—2,,——=( 2:') ,

where
R dk-14+2F |l -2k|

2’ ? 2
are odd positive integers. Supposc that
R 4k -142F
o )7

GCD(
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Then there is an odd prime p which divides R/2° and (4k — 1 + 2F)/2%, and
thus p divides 3k — 1 — 2F,4k — 1 + 2F, and | - 2k, giving successively

p'ak"211 p|4k—lr pl?k, Vlkr P'I,
cantradicting G D(k,1) = 1. Illence we have

(13.9) (;(7,)(5:,45' SRRy
21 2 Y

From (13.8) and (13.9) we sce that

R .
(13.10) 5;:)&’,
for some integer X. Next we show that « is even. This is clear if ¢ = 0 so we
may suppose that ¢ > 1. Thus 2| R and so [ is even. As GCD(k,l) = 1 we
have k odd. Then, taking —k2 4+ 3kl — 12 = F? successively modulo 2,4 and 8,
we get

(13.11) F=1 (mod2),
(13.12) 1=2 (mod 4),
(13.13) 1=2 (mod 8).

Thus we have 4k — 1 £ 2F = 0 (1vod 4) and so ¢ > 2,b > 2. Also we have
27in(ad) | (4k ~ | 4 2F) = (4k ~ | - 2F) = 4F,

and so as ' is odd we have min(«,b) < 2. If a < b then we have ¢ < 2, which
implies that « = 2. If b < a then b < 2, which implies that b= 2, « = 2c ~ 2.
In both cases « is even as asserted.

Setting ¢ = 2d, zo = 29X, we have 2 = z3. Then from (13.4) we deduce
that 7' = 93, § = *woy. Changing the sign of zo if necessary we may
suppose that § = zoyo. Thus we obtain 23+ y3 = R+ 1 = (5R + 51)/56 =
(4k—1=2F + k+ 1+ 2F)[5=k and 2% + 2700+ 293 = R+ 25+ 21 =, 50
that (zo,%0) is a solution of (13.0).
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Now let (z,y) be any solution of (13.0). L'ken using (13.0) we have
F2= k2 43kl - 12 = (22 4+ 2y — 9?)?,
so that (with } chosen Lo satisfy (13.1))
(13.11) tyzy—y? = kF .

Solving (13.0) and (13.14) for «%, xy. ¥*, we get

Hat Al 14 2F,
(13.15) Sey = —3k+ 2% kK,
592 = k+1x2F.

As
F=2k+1)#0(mod5)

the lower signs must hold in (13.15), and so

o = (tk—1-2F)[5,
(13.16) zy = (=3k+2- F)[5,

¥ (k+1+2F)/5.

Since this is true for any solution of (13.0) we must have that (13.16) holds
with z,y replaced by zg, yo respectively. This means that

2 2 2 2
" =g, ZTY=%oYo» Y = Yo

giving
(Ivy) = (10)!/0): or (—320, "1/0) ’

and proving that (13.0) has exactly two integral solutions.

14. Let r and s be non-zero integers. Prove that the equation
(14.0) (r? = 8%)a® ~ drsay — (1" — %)y" = |

has no solutions in integers ¢ and y.
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Solution: We suppose that z and y are integers satisfying (14.0). Factoring
the left side of (14.0), we obtain

(14.) (r=s)e = (r+ )+ o)z +(r—s)y) = 1.

As each factor on the left side of (14.1) is an integer, we see that

. (r—=s)z—(r+s)y = ¢,
(14.2) {(r+s)m+(r~s)y - €,

where ¢ = k1. Solving (14.2) for z and y, we obtain

(14.3) x:%;;, y=;2——f%2-.
Hence we have (22 + y2)(r? 4 s2) = 1, so that 72 + s% = 1, that is
(r,¢) = (£1,0) or (0,%1),
which is impossible as 7 and s are both non-zero, thus showing that (14.0)
has no integral solutions.

15. Evaluate the integral

(15.0) I= /01 Inzin(l-z)dz.

Solution: The function InzIn(1 —z) is continuous for 0 < z < 1, but is not
defined at 2 = 0 and = = 1, so that

1-6
(15.1) I= lm / Inzn(1- c)dz .
on

For z satisfying

(15.2) 0<e<z<1-6<1,
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und 1 a positive integer, we have

o 2k n _k 0 pk=(n+1)
_ln(l_z)'—-ZT:E%"I'IHH 3 raml)
k=1 k=1 k=n+1
and so
=z z" — zk
In(1-2a)+ = = gt
n(1-x) Z:( k §n+ 1+k
< Nl 2 ;"k
R T | io
zn+l
T o (n+)(1-2)°

Thus we have

1-§ LI
/¢ ln:o:(ln(l—.1:)~|-k§l k)dz

1 1-6 gntl
< oD 1)/¢ (-lnz)———-(l_z)dz

Now, for y > 1, we have

(15.4) 0<khy= / /vdt y-1.

Taking y = 1/ in (15.4), we have

(15.3)

(15.5) os—lnz=ln(1)<l-1=1".
x z

z
Using the inequality (15.5) in (15.3) we deduce

|/ lnzln(l—z)dz-l-z / z¥Inzdz

1—1
1-6
< / z"dz
n + 1/,

n+1
1
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and letting n — oc, we obtain

16 20 1-6
(15.6) / Inzln(l - z)dz = —Z{-_/ *Inzdz .
‘ k=1 Tt

As

d (Ik+l Inz ght!
k41 (k+1)2
by the fundamental theorem of caleulus, we have
[ _ g+ _ _ )k
/‘ Htingdr = (1 —6)*1in(1 8) (1-6)
€

k+1 (k+ 1)
K ne

) =x*lnzx,

drt

ek+t

BN TSERATYSV R

so that by (15.6)

1-5
/( Inzin(l-«)ds = Ine Z k(l. T 1) E L(Ic + l)2

k=1

(l — 5)k+l (1 - 6)k+l
_'““"MZ kk+) Z Kk + 1) °

that is
1-5
(15.7) / InzIn(1 - z)dz
) = (In€)A(¢) - B(e) — (In(1 - 6))A(1 - 8) + B(1 - 6),
where, for 0 < y < 1, A(y) and B(y) are defined by

k41

15.8 A =°°—§’-—-—,
(15.8) (9) gk(ku)

k41

15.9) Bw)=% ¥
( (v) g k(k + 1)2
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We next show that

(15.10) lir&(ln €)A(e) =0,
(15.11) Jim (In(1 - 8)A(1-8) = 0,
(15.12) lim B() = 0,
0t
15.1 lim B(1-6 i
(15.13) Jim, a- ):2—?,

so that (15.1) and (15.7) give

(15.14)

as asscrted in the 1IINTS.

Before proving (15.10)-(13.13) we show that

(15.15)

For 0 < ¢ < 1 we have

2 3
—ln(l-—€)=€+f—+(—-+---

2

50 that

fl‘i'rtl‘%(lm)ln(l -=0.

3

(’
{ < e+eE+S+---

clne¢

—-elne<(lne)ln(l-e)<—l ,

— €

frorm which (15.15) follows, as

(15.16)

lim elne=0.
e—0t
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Now for 0 < € < 1 we have
0 ko k1
A(e) ‘E“- Z—-
k=1 k k=1 k+ 1
—cn(1 =) +1In(1- ¢)+ ¢

(I -aglm(1-)+¢,

il

It

so that
(h.(n'u(ln AA() =0

T'his proves (15.10).
Next we have, by Abel’s theorem,

o )
] B o 0 (] — ‘Q)k-H _ 1 _
BI'J(')‘,' AL -8 = ohjg*kz;l k(k+1) S k(k+1)

1 )
so that
6|lr(1)1‘(ln(l -NA(1-6)=ln1=0.
‘This proves (15.11). Also we have
i’: 1
IBEN<¢) i
jma Rk 412
so that
(!_I.Iél' B() =0,
proving (15.12). Finally, by Abel’s theorem, we have

lim B(1-46) = i i(_l___ﬂ)fi
Jim, B(1-8) = lim, & k(k 1 17
b 1
- gk(kﬂ)2
o1 1
- ,?;(k(ku)'(kn)?)
".2
= 1-(%-1)
.".2

6 )
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moving (15.13), and completing the proof of (15.14).

16. Solve the recurrence relation

n

(16.0) $ (Z)a(k): ﬂ%] , w=1,2,.

k=1

Solution:  We make the inductive hypothesis that a(a) (- 1"V f(u 1 1)
for all positive integers n satisfying 1 < n < m. This hypothesis
is true for m = 1 as a(1) = 1/2. Now, by (16.0) and the inductive hypathesis,

we have n ot
_m+1 m+1\(-1)
“('"“)‘m+2“kz=l( k ) el

Thus we must show that

2"': (m + 1)(—|)k+l _mtl- (=™
p k k+1 m42 !

or equivalently

'"Z“ (m+ 1)(—])"+1 _m+1

P k k+1 " m+2°
By the binomial theorem, we have for any real number z
m+1
(16.1) (1+zy™+ =Y mA ) ok
k=0 k

Integrating (16.1) with respect to z, we obtain

) (122 " fin 41 1
(16.2) m+2 Z k A+l+m+2'

Taking z = —1 in (16.2) we have

"'Z’f:' (1n+ 1)(—1)*+1 o
= k k41 m+2
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and so

'%‘ (m+l)(—1)"“ gL _m+l

et k k+1 m+2 m42

as required. The result now follows by the principle of mathematical induc-
tion.

17. Let n and k be positive integers. Let p be a prime such that
p>m*+n+ k24 k.
Prove that the sequence
(17.0) n?, w241, n242,...,0%2 41,

where | = (n? + n + k)2 — n? + k, contains a pair of integers (m,m + k) such

that
(5)- (224
P P '

Solution: As n and k are positive integers and p > (n? + n + k)% + k,

none of the integers of the sequence (17.0) is divisible by p. If
(%) = 1 we can take (m,mn + k) = (n2,n2 + k). If (‘"—*’—'fﬂ) =1 we can
take (m,m + k) = ((n + 1)%,(n + 1)? + k). Finally, if

(n2+k) _ ((n+l)2+k)__l
p ] P 7

we can take (m,m + k) = (02 + n + k)2, (n® + n + k)2 + k), as

((n2 +n :W + k) _ ((n2 + k)((r;+ 1)2 4 k))

n24k\((n+1)?+k
Gt
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This establishes the existence of a pair of integers as required.

18.

Let

1 1
4n 41

an =

Yines

1

2“n—*+‘é , n=0,1,...

Does the infinite series 02 a,, converge, and if so, what is its sum?

Solution:

Let s(N) = TN o e,

N =0,1,... We have

s(N)

i( 1 1
4n+l+4vz+3 2n+2

- i(l—_—‘+ Lol L
T SZMUn+l Ant2 4nd3 Antd dnt+ 2 dntd
4N+4( l)ml 2N+2( ])rrl

x 2

m=1

Letting N — o we have

[ o<
. ( l)m 1 1 ])m 1
im (V) = 3= §Z=
_ 3 (—1)'"-l
- ZX_: m
m=l
3
= §ln2,

so that Y52 a,, converges with sumn 3 ln2.

19.

Let ay,...,0.;, be m (> 2) real niunbers. Set

An=ar+az+...+4u,, n=12,....m
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Prove that
m A,, 2 m 2
(19.0) 3 (7) <12)"a2.
n=2 n=1
Solutjon: For n = 1,2,...,m we have
(%) = (e fe-e)
- = an+ — — “n)
n n
2
< 2a,1.+‘2(& —a,.)
n
2
= 4a?,+2( ") —40,.&,
n n
and so
m m
(19.1) (—") <4) ap + 2 ( ) —".
L() sogaek P2h
But as
—20,An = —(A% - AZ_)) —al < (A% - AL)
we have
= An i (Az l)
- In ¢«
2u§an - "z=; -
- m—1 A?u &
= n(n+1) m
that is
(192) 2% I
19.2 - ﬂ-n — S
n Znn+1)
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Using (19.2) in (19.1) we obtain
mooA 2 m m A2
on < 4 2 2 n
E;('n) = "Z:;a" + "Z;:( ) Zln(n-l—l)
= 2 ¢
= 4"); a? 2;2:; n2(n+ h
that is
. " 2 /1" 2 m N
(19.3) f/;(“n+1 (n) S4nz=:]a,,
The inequality (19 .0) now follows from (19.3) by noting that 1— 2= = 0 when

n4l
n=1l,and 1 - %5 > zgforn>2.

20. Evaluate the suin

5= g{) (2n—l)
for all positive integers n.
Solution: We have
G (_k;,_) _ al(2n-k)!  al(2a-k-1)
G &) -k T (n-k-1)2n!
_ nl(2n-1-k) ((2n—-k) (n—k)
B ('n k) (2n - 1)1( m
()
2 (Zn—l)

so that

wn

£B- )

)
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= 2.

21. Lot e and b be coprime positive integers. For & a positive integer,
let N (k) denote the uumber of integral solntions to the eguation

(21.0) ar+by=k, >0, ypr0.
Fvaluate the limit Nk
L= hm —() .
k—too k

Solution: As a and b are coprime there are integers g and h such that
(21.1) ag 1 bh— k.

Then all solutions of az - by = k are given by

(21.2) z=g+bl, y=h-at, t=0,%1,%2,... .

Thus the solutions of (21.0) are given by (21.2) for those integral vahues of ¢
satisfying

h g
. -> -4
(21.3) S22~y
Set
. _J 0, ifbdivides g,
(21.4) Ab,9) = { 1, ifb does not divide g,

Then there are

- [3] - e
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values of ¢ satisfying (21.3). Hence we have

h -
(21.5) N(k) = [;] - [T”] - Mbg)+1,
and so A
; a_9 =
|¥ (k) - - b|51+1+1+1 4,
giving, by (21.1),
Nk 1
k ab
Letting k — +00 in (21.6), we obtain I = 1/ab.

- 4
(21.6) l <k

22. Let a, d and r be positive integers. For k = 0,1,... set

1

(22.0) uk = uk(a,d,r) = @TF)EI DD @ k0D

Evaluate the sum "
S = Z U,
k=0
where n is a positive integer.

Solution: For k = -1,0,1,... we sct

1
(a4 (k+1)d)---(a +(k+r)d)rd’

(22.1) v = vi(a,d,7) =
so that

Uk — V1

1 1
“la+(k+2)d)-(a+(k +r)d{rd ((a+(k +1)d)
ot (k +7+1d)
T et k+DdYa+ (k+2)d)---(a+(k+rd)a+(k+r+1Dd)°
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that is v — tx41 = upyr- Hence we have

n—-1 ne-l

§= Zm = LZ Uepr = Y (k= Vkpr) = 0g — W,

k=—1
that is
1 1 1

5 rd (u(n-{-:l)---(u{-(’r— 1)d) - (a+ (n+ I)d)~-~(;1-|~(71+;m)'

23. et «y,...,7, be n (> 1) real nmubers. Set
e =ai— 5 (1<i<j<n)

Jet F be a real-valued function of the n(n - 1)/2 variables z;; such that the
inequality

(23.0) F(e11,212,. ..y Tnin) < Y T4
k=1

holds for all zy,...,2,.
Prove that equality cannot hold in (23.0) if Y_F_, zx # 0.

Solution: Set M = (x; + -+ + «5n)/n, and replace each z; by z; — M in
(23.0). Then (23.0) gives the stronger inequality

n 2
F(xyy,z12,.- y-'tn—ln)<2(1'k" M)? = Z"L - ;(sz) .

k=1

Hence if #,...,2, are chosen so that Y i_, «x # 0, equality cannot hold in
(23.0).

24. Let ¢1,...,8m be m (> 1) real numbers which are such that
Yo, ay # 0. Prove the inequality

m 2
(24.0) (2 na ) / (g a") > 2\/_l-m .

n=1
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Solution: By the Cauchy-Schwarz inequality we have
m 2 m 1 2 m ™
(24.1) (Z a,,) - (Z a/n —) <Yonal Y-
n- 1 n—1 \/7—] n=1 n.-1 n
Next, we have
L n dp m dy
=< —
nz_; 2 1+ /. * = 1+ /. N
14(2vVm-2)=2/m-1<2/m.

We obtain (24.0) by using the latter inequality in (24.1).

|
IA

1]

25.  Prove that there exist infinitdly many positive integers which are
not expressible in the form n? 4 p, where n is a positive integer and p is a

prime.

Solution: We show that the integers (3m + 2)2 ,m = 1,2,...

, cannot be

expressed in the forin n? 4+ p, where n > 1 and p is a prime. For

suppose that
(3m+2)2=n’+p,

where n > 1 and p is a prime, then

(25.1) p=Bm+2—-n)(3Im+2+n).

Since p is a prime and 0 < 3m + 2 — n < 3m + 2 + n, we must have

(25.2) Im+2-n=1 3Im+24n=p.
Solving (25.2) for m and n we get

m=(p-3)/6, n=(p-1)/2,
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so that p = 3(2m + 1). As pis prime, we must have m = 0, which contradicts
m> 1.

26. Evaluate the infinite scries

a3 2
§=3Y"" =)
P arctan ("1)

Solution: Forn > 1 we have

1 1
arctan (1—1) — arctan (n n 2)

L1
arctan | -~—nt2
( 1+ n{n+2)

|

[

-

=3

£
~~

50 that for N > 2 we have

iv: arctan (2 )
n?

n=2

'Z: arctan (75

= Nz-:l (arctan (%) - arctan (77 _l" 2))

n=1

= arctan(1) + arctan (%) — arctan (%)

1
- arctan (X’-i-__l) .

Letting N — oo we get
= 2
’garctan (;—;) = arctan(1) + arctan (-;—) = % + arctan (%)

and so 1
S = % + arctan(2) + arctan (5)
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27. Let p1,...,pn denote n (2 1) distinet. integers and let [,(z) be
the polynormial of degree n given by

L) =(z i) =) . (x=p).
Prove that the polynomial
) = Un(z))* + 1

cannot be expressed as the product of two non constant polynomials with
integral coeflicients.

Solution: Suppose that g,(z) can be expressed as the product of two non-
constant polynomials with integral coeflicients, say

(27.1) gn(z) = Kz)k(<) .

Neither h(z) nor k(z) has a real root as gn(x) > 0 for all real z. Thus,
ncither h(z) nor k() can change sign as & takes on all real values, and we
may suppose that

(27.2) h(z) >0, k{z)>0, forallrealz.

Since gn(p:) = 1, i = 1,2,...,n, we have h(p) = k(p:) =1, 1 = 1,2,...,2.
If the degree of cither h(z) or k() were less than n, then the polynomial
would have to be identically I, which is not the case as h(z) and k(z) are
nou-constant polynomials. Hence both h(z) and k(z) have degree n, and

k(z)=1+bz—m)---(z - pn),
for integers ¢ and b. Thus we have

(274)  (z=p )z —p) (e —pa)* +1
=14 (a+b)(z=p) - (x = pa) +ablz =) (= pn)?.

(27.3) { h(z)=1+a(x —p1)--- (== pa),
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Equating coefficients of 22" and z" in (27.4) we obtain

ab =1,
(27.5) {a+b =0.

Thus we have a contradiction as no integers satisfy (27.5).

28. ‘Two people, A and B, play a game in which the probability that
A wins is p, the probability that B wius is ¢, and the probability of a draw is
r. At the beginning, A has m dollars and B has n dollars. At the end of each
game the winner takes a dollar from the loser. if A and B agree to play until
one of them loses all his/her money, what is the probabilty of A winning all
the money?

Solution: Let p(k), k= 0,1,..., denote the probability that A wins when
he/she has k dollars. Clearly, we have

(28.1) p(0)=0, pm+n)=1.

We want to determine p{m). Consider A’s chances of winning when he/she
has k + 1 dollars. If A wins the next game, A’s probability of ultimately
winning is ap(k + 2). If A loses the next game however, A’s probability of
ultimately winning is bp(k), while if the game is drawn, A’s probability of
ultimately winning is cp(k + 1). Hence we have

plk+1) =ap(k +2) + bp(k) + cp(k+ 1) .
As a+ b+ ¢ =1 we deduce that

ap(k +2) — (a+b)p(k+ 1)+ bp(k) = 0.
Soving this difference equation, we obtain

[ A+BE  ,ifa=b,
”"‘)‘{ A+ B(bJa)* ifa#b,
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where A and B are constants to be determined. Using (28.1) we obtain

A= 0, B=1/(m+n) ,ifa=b,
A=-B=1/(1-(bJay™") .ifa#b,

so that
_J m/(m+n) vifa=b,
o) = { (i = (b/ay™) [ (1~ (b/a)y™*") , ifa#b.

29.  let f(z) be a monic polynomial of degree n > 1 with complex co-
efficients. Let z,,...,2, denote the n complex roots of f(z). The discriminant
D(f) of the polynomial f(z) is the complex nummber

(29.0) p(fy= II (mi-2,)

1<i<j<n

Express the discriminant of f(z?) in terms of D(f) .

Solution: As z1,...,Zn are the n roots of f(z), the 2n roots of f(z?) are

N = VI, 12 V%2, -0 5 Un = VTa Ukl = —/T1) oo 2 Yan = —/Tn .

Hence, the discriminant of f(2?) is

II - = II G-u° I @-u)?
1<i<5<2n 1<i<j<n 1<i<n<j<2n
II i-w)?
n<i<j<2n
= JI Wa-ym? I e+ vEom)?
1<i<j<n 1<i<n<j<2n
I ~v=s+vEm)?
n<i<j<2n

= I e-va? I] (VE+vE)?
1<i<jg<n :é;é:
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I —vai+ys)?

1<i<3<n
= I m-vam) I VE+ys)
1<i<j<n 1<i<jg<n
H (2y/z, 2
1<i<n
= II @ ) 22"HJ:;
1<i<i<n i=1

= 271 JO)(S))

30. Prove that for cach positive integer n there exists a circle in the
zy-plane which contains exactly n lattice points.

Solution: Let P be the point (v/2,1/3). First, we show that two different

lattice points R = (21,5 ) and S = (z2,¥2) must be at different
distauces from P. For if R and S were at equal distances from P, then we
would have

1 . 1
(@1 = V2)* + (1 - 5)2 = (12— V2)* + (32 — 5)2 '
so that
. . 2
(30.1) Aza-2)V2=xb+ 95 —zl-yl+ 3 - ).

As V2is irrational, from (30.1) we sce that z, — 2, = 0, and hence yg - y? +
%(yl ~ 92) =0, that is

(2= )z +3 —-2/3)=0.

Since y; and y2 are integers, we have y2 + 3 — 2/3 # 0, and so y, = 3,
contrary to the fact that 12 and S are assumed distinct.
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Now let n be an arbitrary natural number. Let C' be a circle with centre
P and radius large enough so that ' contains more than n lattice points.
Clearly C contains a finite number m (> =) of lattice points. As the distances
from P to the lattice points are all different, we may arrange the lattice points
inside €' in a sequence 1, I,... , P, according to their increasing distances
from P. Clearly, the circle C', with centre P, passing through 1,4, contains
exactly w lattice points.

31. Let o be a given non negative integer. Determine the number
S5(n) of solutions of the equation
(31.0) r+4+2y+22=n

in non-negative integers z,y, 2.

Solution: We have for |t| < 1

> s(r)e"

1l

A+t+2 4+ )1+ +0 ... )?

1
1

316, /4 /4 3/16  1/8
S it ta-p it U
3 o ]00
— — n el n
= 162_:' +4z_:(n+1)t
n=0 n=0

D e R STP IR

n=0 n=0

+-;- i(—l)“(n-l-l)t"
n=0

= %i(3+4(n+l)+2(n+ (n+2)+3(-1)

n=0
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+2(=1)"(n +INt",

giving
n(n + 6)
s +
(n+1)(n +3)
8

1 , il nis evern ,
.’i(n) =

, if nisodd.

32. Let n be a fixed integer > 2. Determine all functios f(x), which
are bounded for 0 < z < a, and which satisfy the functional equation

(320)  f(z) = nlz(,( )+I(.C+ﬂ) +f(.c+(1:l—l)a))

Solution: Let f(x) be 2 bounded function which satisfies (32.0)for 0 < z <
a. As f(z) is bounded on (0.a) there exists a positive constant
K such that

(32.1) |(x)] <K, 0<z<a.
¥or s =0,1,...,n - 1 we have
0< "—+—n—sf<a, if0<z<a,
50 that by (32.1) we obtain
l, (x + sa)

‘Then, for 0 < z < a, we have from (32.0),

<K, 0<s<n-1, 0<s<a.

1 '
W@ < (K + K+ 4 K),
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that is | f(z)] < K/n. Repeating the argument with the bound K replaced by
K /n, we obtain
[f(=) < K[o?, O<z<a.

Continuing in this way we get
(32.2) If(z)l < K/n!, 0<z<a,

forl=0,1,...,0ed letting I - » > in (32.2) gives f(x) = 0for 0 <o < a.

33. Let 1 denote the closed interval {a,b], ¢ < b. Two lunctions
f(=), a(z) ave said to be complctely different on 1if f(z) # g(x) for all x in 1.
Let g(x) and 7(z) be functions defined on I such that the differential cquation

dy

2,2 ; .
2 =V Faey ()

has three solutions yy(z), y2(z), ys(z) which are pairwise completely different
on I. If 2(x) is a fourth solution such that the pairs of functions 2(z), y(z)
are completely different for i = 1,2,3, prove that there exists a constaut
K (# 0,1) such that

n(Ky2 — y3) + (1 = K)yays
33.0 = )
(33.0) ‘ (K — 1)y + (v2 — Ky3)

Solution: As y1,¥2,¥3.2 = y4 are pairwise completely different on I, the
function
(33.1) f(z) = (9 = y2)y3 - ya)
(1 — 3)(¥2 — 94)

is well-defined on I. Also, as y),¥2,¥s,ys are differentiable functions on I,
f(z) is differentiable there and its derivative is given by

_ g(=)
I@) = T = vl
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whete
o(z) = (U - ¥ - vs)¥e — va)(us — ¥a)
= (u - w2 — e 3a)ys - m)
= (= v2)(n = g5 - ¥5)ws ~ )
+ (o - )W = vl - wa)(wh — o))
As
P A R R A
we have

9z) = (m+wr+dd-Mm+wm+¢)-(@2+m+q)+(m+wt+q)
(= v2)( — 1) (v2 — va)(ys - ),

that is g(z) = 0, and so f'(£) = 0, showing that f(z) = K on [/ for somne
constunt K. Finally, (33.0) is obtained by solving (33.1) for z = w4. K # 0,1
as = # ys, N1 respectively.

34. let an, n = 2,3,..., denote the number of ways the product
biby...b, can be bracketed so that only two of the b; are mulliplied together
at any onc time. For cxample, a; = 1 since byjb, can only be bracketed
as (byb2), whereas ay = 2 as bybzbs can be bracketed in two ways, namely,
(b1(b,b3)) and ((b1b2)bs). Obtain a formula for ay,.

Solution: We set a; = 1. The number of ways of bracketing byb; -« - by i

2 NLYNGE+ Ln+1),

=1
where N(i,7) denotes the number of ways of bracketing bibiyy -+ by, if £ < 3,
and N(#,7) = 1,ifi = j. Then

(34.1) Qnpl = QGn + 02Uy + <+ + Guog G2 + apay, 1 —1,2,... .
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Set
(34.2) A(x) = 50: anz" .
n=1

From (34.1) and (34.2) we obtain

(54) ()

~ aia,z,‘-ﬂ = Z x (L;u,z'+J
1

n=1 w=1
yuntl

A(r)?

[l

=

o0
= Y (a10n + az0peg + -+ - + anay)z™!

n=1
o

= Zan+l$"+l = A(I) -,
n=|1

that is

(34.3) A(z)? - A(z) +2=0.

Solving the guadratic equation (34.3) for A(x), we obtaiu
Aiz) = (1 V1I—4z)/2.

As A(0) = 0 we must have

(34.4) A(z) = (1-V1-4z)/2.

By the binomial theorem we have

D & l/2 ", n

(34.5) Vicdz =) A (GO
n=0

so that, from (34.4) and (34.5), we obtain

(34.6) A(z) = -% > (1/ 2)(-—4)%" .

n=1 n
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Equating coeflicients of z" (n > 2) in (34.6), we obtain

a = -% (17/12>(—1)"22"

(_l)n—122n-—l (1/2)
135...(2n_ 3)

(_ l)n- l22n—l(_l)n—l Rl

1

2" n!

tiat is 135 2

an (| iind) PUE

n!
35. Evaluate the limit
q I N .

(35.0) L= ‘I,er(\’ y/o tan(ysinz) dz .
Solution: ~ We begin by showing that
(35.1) t<tant<t+t3, 0<t<1.

We set
f(t) = (tant—t)/£*, 0<t<1,
and deduce that
fity=g@)/t, 0<t<1,

where
{ g(t) =ttan?t— 3tant+3t,

gt = i%(m —sin2t).

Hence ¢'(t) > 0,0 < t < 1, which implies that g(2) > ¢(0)=0,0 < t < 1. We
deduce that f is an increasing function on 0 < t < 1, so that

flo+) < f(®) < f(1), 0<t<1,
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that is L tant—1
ant —
=< <tan(l)—1, 0<t<1.

3S—p Sta(l)-1, 0<t<

Since tan(1) < tan(r/3) = V3 < 2, we have

tant —1{

0< —5

<1, 0<t<Ll1,

which completes the proof of (35.1).
ForO0<z<mand 0 <y <1 wehave 0 <sinz <1 and so

(35.2) 0<ysinz<1.
Hence, by (35.1) and (35.2), we have

ysinz < tan(ysinz) < ysinz + (ysinz)®,

so that
(35.3) 0< @wy)_—lﬂn_z < Psin’z .
Integrating (35.3) over 0 < z < 7, we obtain
l n ”
(35.4) 0< !—1/ (tan(ysinz) — ysinz) dz < y2/ sinz dz .
o o

Letting y — 0+ in (35.4) we deduce that

1 s
lim ;/ (tan(ysinz) — ysinz) dz =0,
o

y—0+
and thus
li ! ’t (ysinz) dz /’sinzd:c
im — an =
=0+ y Jo y (] !
that is

(35.5) yﬁx& -;;/0 tan(ysinz)dz = 2.
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Replacing y by —y in (35.5), we see that

T
(35.6) lim 1 tan(ysinz) dc =2,
o

y=0- y
also. llence, from (35.5) and (35.6), we find that L = 2.

36. Let ¢ be a real number with 0 <. ¢ « |, Prove that there are
infinitely many integers n for which

(36.0) cosn>1—c.

Solution: According to a theotem of Hurwitz (1891): if 8 is an irrational
number, there are infinitely many rational numbers a/b with b >
0 and GCD(a,b) = 1 such that

PR
b\\/gbz.

As m is irrational, Hurwitz’s thecorem implies that there are infinitely many
rational numbers n/k with k > 0 and GCD(n,k) = 1 such that

-2« 2
Ly VAR
or equivalently
(36.1) [27k — n] < 1/(VEK) .

Let 0 < € < 1. We consider those integers n and k satisfying (36.1) for which
k > 1/(+/5¢). There are clearly an infinite number of such positive integers
k, and for each such k there is an integer n such that {2xk — n| < €. For such
pairs (n, k) we have

1-cosn < |1-cosn|
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= ,sm (I.1r+ 2) lsm (kw—g)l
< 2!sin(k7r- ;)l

< 2k7r~ﬁl
< 7

= 2hkw. nf

< «,

showing, that (36 0) holds for inlinitely many inteers o,

37. Determine all the functions f, which are everywhere differentiable
and satisfy

(37.0) 1)+ 1) = 1 (752 )

for all real z and y with zy # 1.

Solution: Let f(«) satisly (37.0). Differentiating (37.0) partially with re
spect to cach of z and y, we obtain

. . 1+y* o (=z+y
(37.1) 1= grls ()
and

7. gy = LT (D
(37.2) rw =gt (L) .
Eliminating common terms in (37.1) and (37.2), we deduce that
(37.3) (1 +22)f(2) = 1+ 9")[(y) -

As the lcft side of (37.3) depends only on z and the right sidc only on y, each
side of (37.3) must be cqual to a coustant c. Thus we have

j’(r) + 2 ,
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and so
f(z) = cartanz +d,

for sonie constant d. However, taking y = 0 in (37.0), we obtain f(z)+ f(0) =
Jir), so that f(0) = 0 and d — 0. Clearly f(z) = carctan £ satisfies (37.0),
and so all solutions of (37.0) are given by

J(x)- carctans,

where e is a constant.

38. A point X is chosen inside or on a circle. Two perpendicalar
chords AC and BD of the circle are drawn through X. (In the case when X
is on the circle, the degenerate case, when one chord is a diameter and the
other is reduced to a point, is allowed.) Find the greatest and least values
which the sum § = |AC| + | BD| can take for all possible choices of the point
X.

Solution: We can choose an (x,y)-coordinate system in the plane so that

the centre of the circle is at the origin, BD is parallel to the
z-axis, AC' is parallel to the y-axis, B lies to the left of D, and A lies above
C. Let X dcnote a point (r,s) such that

(38.1) 42 < R

where R is the radius of the circle. Then the coordinates of the points
A, B,C,D arc

(T, \/R2 - 7'2)7 (-\/ﬁ - 32,5)1 (T,—\/R2 - 72)1 (\/R7 - ""21"‘)

respectively. Thus we have
|AC| =2V R? =12, |BD|=2VR?- ¢,

and so

5(r,5) = |AC| + |BD| = AVRZ = 12 + VR2 — 7).
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We wish to find the maximum and minimum values of S(r,s) subject to the
constraint (38.1).

First we determine the maximum value of S(7,s). Clearly, we have
VI 12 4 VR g2 <2R,

and this proves that

IRERIE

max  S(r,s) = $(0.0) - 1R
n

Finally, we detennine the minimum value of S(7,s). We have

(VRE =i p V2= 32)

1

202 - (1% + 2) + 2VRE — 22 VI - 52
2]{2 - (1,2 + 82)

2~ (7 + ) 4 (0" 4 87 - R

R,

v v

so that )
VR - 72 4 /R - 522> R.

This proves that

min S(r,s) = S(£R.0) = S0, £ k)= 2R

régsts

39. Forn=1,2,... define the sct A, by

A [ 0268, ifn=0(mod2),
"7 {0,3,6,...,3(n - 1)/2}, ifn=1(mod?2).

0 (F ) = (3 (D 4r)

n=1 \k=1

Is it true that
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Solution: We set X = {0,2,4,6.... } aud Y = {0,3,6,9,... }. Clearly, we

hiave
o
A CALC A Coee C U Aggr =Y
n-=0
and
Ay Ay A — 2 N
Hlenee, we have for n = 10200,
0 ~ %
n Au}k = ﬂ Npgr N ﬂ An-lk
k=1 k=1 =1
n Hk=0 (mod 2) nt k=1 (mod 2)
= XNb,,
where
B = Ay, fn=0 (mod2),
T Angz, ifn=1 (mod?2),
and o

2

(ﬁ Anu-) = G(Xn By)

n=1 \k=| ri=]
-
= Xn (U 13,.)
n=1]
o
= Xn (U Az,‘“)
n=1
= XnY.
On the other hand, we have
o oo o0
UAnlk = U AMk U U Arﬂk
k=1 k=1 k=1
7 4 k=0 (nod 2) n4 k=1 (nod 2)

I

XuYy
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forall n = 1,2,..., so that

ﬁ(DA",k)=XUY

n=1 \k=1
Hence, we see that
o~ o
O (A ) #((0 )
n-z1 = n=l

as 2 belongs to X UY but does not belong to X (1Y,

40. A scquence of repeated independent trials is perforined. ach
trial has probability p of heing successful and probability ¢ = 1 - p of failing.
The trials are continued until an uninterrupted sequence of n successes is
obtained. The variable X denotes the number of trials required to achieve
this goal. If pr = Prob(X = k), determine the probability generating function
P(x) defined by

3

(40.0) PEy=Y pot

k=0

Solution: Clearly, we have

0 Lk=01,...,n-1,
Pr = I s k=mn,
" k=(n4+1),(n+2),...,2n

For k > 2n we have
pi = Prob(A) Prob(23) Prob(C') ,
where A, BB, C represent events as follows:

(A) no n cousecutive successes in the first k —n -1 trials;
(B) (k- n) th trial is a failure;
(€C) n successes in last n trials.
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Then pi = (1 — Prob(D))gp™, where D represents the event of at least one
run of n consecutive successes in the first £ — n — 1 trials, that is

k—n-1
i = (1 - L p,) g, k>2n.

i=0

Hence we have

o k-n-1
P(z) = pla +qp" (" 4ok ™) bt Y (1= Y p)et,
k=2n+t =0
and sa
P . P o ken—}
(.? = l4grt-+z)tg Y =g D Y et
Pz k=2n+1 k=2ntl =0
1
(z — ") " ! o o
= 14 -+ -qT piT
T~z Ta- g:g:o
(1 -z +¢x) n+1m"+l !
= T —qT Pz
(1-2) ,ZZ ‘
1-x +gz
- LT—L) 5 pra!
( 1= 0r=0
1-2+g% r
e Y oL T
(1-1z) 1=0 r.o=0
r+n=rl
1-z4gzx
- (1-z +gx) i ‘l ) e ZZ”"“T
r=0s=0
1-z gz r
L__q_) ~ QT (Z p"+.,1'"+ ) (Z xu) ,
(1 - ‘T‘) r=0 s=0
that is
Pr) _(1-z+gz)  Px)
pizn - (1 - 1‘.) (1 - 3:)
so that )
p"a"
Pla)= B

—x 4 qpﬂl'""'l ’
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41. A, B,C, D are four points lying on a circle such that ABCD is a
convex quadrilateral. Determine a formula for the radius of the circle in tets
ofa = |AB|, b =|BC|, c — |CD] and d = |DA|.

Solution: We first piove the following result:
The radius of the circumcircle of a ALMN is given by

Imn
Vd+Em+n)lTem —n)i—m+n)(-l+m+n)’

(41.1) R=

where
I=|MN|, m=|NL|, n='LM|.
Let C denote the circumcentre of ALM N, so that |LC| = |M('| = [NC| = k.
Set
a=[MCN, B=[NCL, 7=LLCM,
so that a + 3 + 7 = 2r. By the sine law applied to AMCN we have

! R

sina  sin((7w — a)/—2)

so that .
sin o .
= R;Tés(_a/2) = 2Rsin(e/2) .

Similarly, we have
m = 2Rsin(#/2), n=2Rsin(7/2).

‘Thus we obtain

sin(7/2)
sin (ﬂ - (u_-;_[i))
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- s (n+;3)
= sinly 45

= sin(a/2) cos(3/2) + cos(a [2)sin(3/2)

i / m m 1?2
= 1= Y PR
sV T e TarV' ane

aud so
o7 1

i /l“ m’ +1|VI r
" — . ' - 5.
' \/ 112 1R}

Squaring both sides we obtain

2 2 1, 2 2
1_pfym of 2 Y, (1_)( _.’,")
n® =1 (1 4]{2)+m (I .”{l‘ +Zlm\/ 1 TR 1 i)

and so

. 1?2 w2 2 . 2m?
2t/ (1= ) (1 i) =0t ==ty 5

Squaring again we find that

9 a I m P P "in
2,2 2 2 2,2
Al*m’ (l - ) (] — 4__... ) - (’7. -1 =—m ) + —_l__

?m? ;
. 2_ 2 2
T e —-1%- m),
giving, after some simplification
. , 5 %nin?
(n“’ —Iz——m‘)"’—:llzm.‘ = - -
B2

which establishes (41.1).
Returning to the original problem, we sev £ = |AC'|, and § = /ABC, so
that /CDA =7 — 6. By the cosine law in HABC and HACD, we have

41.2) «? = a* 4 b — 2abcos
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aud
(41.3) 2=t 4 d* - 2dcos(m - 0) = ¢ +d* + 2cdcos0 .
Eliminating 22 fiom (41.2) and (41.3), we obtain

(050 - “Y + bz (2 ‘Iz

20ab + {')l)E )
lising this expression for cosll in (11.2), we pet

w2
N E e ]

b(u'z +02 2 4%
(ab + cd)
(ac + bd)(ad + bc)
(ab 4_- cd)

[(ac + bd)(ad + be)

= V (ab + cd)

The radius 7 of the circle passing through A, B,C, D is the circnmradius of
AABC, and so by (41.1) is given by

so that

aby
e

abx

V(o + b)Y — 2?) (22~ (a - b)?)

Next we have
(ac + bd)(ad + bx)
- (ub + (‘d)
ab((a + b)? — (c - d)?)
(ab+ed)
abla +b—c+d)(a+b+c—d)
(ab+ced)

(a+0b)%-2* = (a+b)?

and similarly

ab(—a+b4ctd)a-b+c+d)

s (a— b2 =
7 -la=b) lab + cd)
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so that
,e (ab + cd)(ee t bd)(ad t be:) )
(matbtectrd)a—btetrdfatb—ctdiatbte- d)
42. Let LB he a convex quadrilateral. Let 2 be the point vutside

ADBCD such that [AP| — /PB, and 7405 .. 90°. The point= Q, I, 8 are
similarly defined. Prove that the lines PR and G8 are of equal length and
perpendicular.

Solution: We cousider the quadrilateral ABC'D 1o be in the complex plane

and denote the vertices A,B,(",1) by the complex nuwbers a,
b, ¢, b. Then the midpoints H, KN, L, M of the sides AB, BC,C('D, DA are
represented by (a +0)/2,(b + ¢)/2,(c  d)/2,(d | a)}/2. Let p represent the
point P. As |PI[| = |BH| and PI L BH we have

-6 (1)
p= (L;?)(a | ib).

q = l;‘ (bt ic).
= (L) (a1 id),
s = 12;| (d+ia).

so that

Similarly, we find that

Irom this we obtain

p-Tr =
q—s - Z

_ ('?

) (=) 4 i(b-d)) .
V(b= d) b il - a)
N((e ¢)tith-d)),
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so that ¢ — s = —i(p — 7), proving that |PR| = |Q5| and PR L QS.

43. Determine polynomials p(x,y, =, w) and ¢(z,y,3, v) with real
coeflicients such that

(43.0) ey 4 2 b ) - (2 22)(0% - 2u)

—(plag. o)) (P2 2 g, g eV
/i

Solution: We seck a solution of (43.0) of the form

: 7’("").‘/*2‘ w) = axy+ X,
M-’.l) { 0(x,y, w) — y4V,

where X and Y are polynomials in z,w, and z. Substituting (43.1) in (43.0)
and simplifying, we obtain

(43.2) ((: w)? | 212111) b 2e(z t w)y
= (.\’2 ~{x? - 2z))'2) 12 (r.\' — (2% - 2:})') i,
which gives

1.3 X2 o (2 = 22)¥2 = (o — w)? 4 2%,
(13.3) X = (22 22)Y (s w).

From the second equation in (43.3) we have
X= ((:zr2 —22)Y px(z } ur)) IER
and, using this in the first equation in (43.3), we obtain after simplification
XYiP—uw(z f w)Y | 22w =0.

Solving for ¥ we find that Y = zw/z or ¥ = z. Discarding the first solntion
as we are seeking polynomials X and Y| we have

X=a’-zpuw, Y=z,
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and so we may take

Pz, Y, 2,w) = 2y + z— 4 w, q(z.y,z,ur) =x4+y.

44. Jaet C denote the field of complex mmbers, Lot f:C = C be a
fuuction satisfving

, SO =0,
(41.0) { 1f(z)= f(w)| =]z |,

for all zin C and w = 0,1,1. Prove that

()= J(z or f3,

where |f(1)] = 1.

Solution: From (-14.0) we have

(4.1 1) = bty
(44.2) |f(2) ~a| =12 -1],
(44.3) 1f(z) =8| = |=-1],

which hold for all » in C, and where
(44.4) o= fQ1), 3= f3)
Taking z = 1,iin (44.1) and 2 = i in (44.2), we obtain

(14.5) log =18l =1, la-g|=V2.
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Hence, we have
o’ + ;'f2 == (123;" + aeid?
= aﬂ((xﬂ + af3)
= a3 (ot + 87 - (o~ )@ - §)
= a8 (jof* + 3% - o - 37)
ad(l+1 -2)
0,

50 that

(44.6) B=cx, ¢=2i.

Next, squaring (44.2) and appealing to (44.1) and (44.5), we obtain
(14.7) af(z)+of(z)=2+7%,

for all = in C. Similarly, squaring (44.3) and and appealing to (14.1), (44.5)
and (44.6), we obtain

(44.8) af(z) - of(z) = —ciz + ¢iz .
Adding (44.7) and (41.8), we deduce that
2af(z)= (1 —d)z+ (14 a)z,
that is, as ¢ = i, @ f(z) = 2 or Z. lence we have
f3)= ()2 o SO,
where | f(1)] = 1, and it casy to check that both of these satisfy (14.0).

45. If x and y are rational numbers such that
(45.0) tanwxr =y,

prove that = k/4 for some integer k£ not congruent to 2 (mod 4).
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Solution: As z and y are rationa) numbers there are integers p, g, 7, s such
that

z=plq, y=r1l[s, ¢>0, s>0,
GCD(p.g) = GCD(r,s) = 1.

The cquation (45.0) becomes
(15.1) tanzl = I
qg s

We have, appealing to DeMoivre’s theorem,

s+ ir\¢ 14 ir/s\Y

(s——zr) = (1 - ir/s)
(l + ita.n(7rp/q))'7

1 —itan(7p/q)
(cos(wp/q) + isill(wp/q))"

cos(mpfq) — isin(rp/q)
cos(mp) + isin(wp)
cos(mp) — isin(np)
( 1P +i0
(-1 -0

so that, appealing to the binomial thcorem, we have
(s +ir)? (s —ir)?
((s + ir) — 2ir)?

9
Z (Z)(s +ir)ik(—2ir)k .

k=0

Hence, we have

—2:7)9 -‘7“‘ q s \g—k
(—2ir)? = Z k (s +1ir)

k=1

q-1
= —(s+ir)y (Z)(s+ ir)omh=t
k=1
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that is
(45.2) (=2ir)? = (s + ir)(z + 1) ,

for some integers & and y. Taking the modulus of both sides of (45.2), we
obtain

22520 = (52 4 r2) (a2 4 97) .
Let p be an odd prime dividing s? 4+ 72. Then p divides 22972 and so p divides
7. Thus p divides 52 = (82 4 7%) — 72, that is, p divides s. This contradicts
GCD(rys) = 1. Thus 2 + 22 has no odd prime divisors and so must be a
power of 2, say

sS+rt=2 1>0.

Further, if { > 2, then s and r aie both even, which is impossible, and so ! = 0
or 1. As s > 0 we must have

(rys) =(0,1) or (£1,1).
The first possibility gives = = k/4, where k = 4p, while the second possibility
gives 2 = k/4, where k = 1 (mod 2), thus completing the proof.

Second solution: (due to R. Dreyer) We make use of the fact that there
are integers ¢(n,7), n = 1,2,... ; r=0,1,...,[n/2],

snch that
[n/2)

(45.3) 2cosnf = Z c(n,7)(2cos B) "%
r=0

for any real number . The integers ¢(n,r) are given recursively by
«(1,0)=1, ¢2,0)=1, ¢(2,1)=-2,
and forn > 3
c(n,0) =1,

c(n,r) =c(n~1,7)-c(n=-2,7-1), 1<7r<(n=-1)/2,
e(nynf2) =(-1)Y?2, neven.
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Now, as z is rational, we may write 2 = p/q, where GC'D(p,¢) = 1 and ¢ > 0.
Further, as y = tan 7x is rational, so is the quantity

(1 —tan®zz) (1 -9%)

z =2cos2rx - 2 - .
2008252 = 2 Mantrn) 2 (14 90)

Appealing to (45.3), with » - ¢ and @ = 2xz = 27p/q, we see that = is a
rational root of the monic integral poly nomial

/2
f(e) - L c(nyrpet H—2.

r=0

Hence, z must be an integer. But |2] = 2| cos 27| < 2 so that z = 0,41, or
+2, that is
cos(‘hrp/q) =0, il/'_), 1 )
giving
2mp

7
R -~ Ax
) (Jl:tl):i, %,

for some iuteger I. Thus, we have

p_2+1 31 1

¢ T4 T 2

Only the first possibility, and the third possibility with [ even, have y = tanrz
rational, and hence & = k/4. where & is not congruent to 2 {mod 4).

46. Let I’ be a point inside the triangle ABC. Let AP meet BC' at
D, BP meet C'd at F, aud CP meet AB at F. prove that

[PALIPB|  |PB|{PC]  |PC||PA|

(16.0) polIPE| " ,PE|PF| t [PFIIPD

>12.

Solution: Let §,95),5%, 53 denote the areas of AABC, APBC, APCA,
APAB respectively, so that § = 5y + 924 95. Since AAB(C and
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AP BC share the side BC, we have
lALp_ S8
|Pp| = 8

50 that,

[PAl_ JADI=|I'D] _|AD]
\Por " 1D (rb| T
S L8 S St S
S S S

Sinularly, we have
IPB] _ s34 50 |01 Sk S
\PE| "8, P Sz
Hence, we have
|PA||PB) |l’li||_li| |1’( | 1P '\|
\PDYIPE] T |PEL|PE] T |PF |l’l)|
(52 4 93)(55 4 5y) 4 (93 + 51)(St + 52) + (514 52)(S2 4 )
S‘l 9" S) 5’( .S’:;Sl

Sy 83 52 S 8 52
== - l
(s,*.s.“*s.s‘ Hotat+ee
Sy 8
4-(9 42404 9)
_ (83, S (J ."2) (_s_. 521
(s. 1 s:»,)' sts)tH(513)

52828
+3+ (s Gt o 5152)

> 242424343=12,

by the arithmetic-geometric mean inegnality, which comnpletes the proof of
(46.0).

47. Let [ and n be positive integers snch that
1<l<n, GCD(Un)=1.
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Define the integer & uniquely by
1<k<n, kl=-1(modn).
Lot Al be the & x [ mattix whose (1,7) th entry is
(i—-Dl+7.

Lot N be the k x I matrix formed by taking the cohimns of M in reverse ander
and wiiting the entties as the rows of V. What is the relationship between
the (g th entev of A and “he Gy teentiy of Vo modulo o™

Solution: I A = [a;;) and B = {b;' are two I x [ watrices, we write A =
B (mod n) if a;, = b; (modn), i — 1,2,k = 1,2,...,L

As kl = —1 (mod n) we have modnlo »
! 2 e =2 1-1 1
I'+1 142 e A=2 2-1 2A
M = 20+ 1 A 42 cer 3 -2 81-1 3
(k=141 (& IMN+2 .o K=-2 K-1 K

[kl = (k= D)) (K =2k =) - 4+ 0) (k+1) 1
(K1 (k=2 (kl—@k=2)) - (2k+2)l (k+2)l 2
(kl = (k= 3)) (k- (2 =3 -+ (2k+3) (k+3) 3l

il

L (ki) (k- k) s Bkl 2kl K

from which it is clear that the (z,7)-th entry of N is [ times the (i, 7)-th entry
of M modulo n.

48. Let 1 and u be integers such that | < < n. Let a;j, i =
1,2,...,m; j = 1,2,...,n, be mn integers which are not all zero, and set
a= max .
1<i<m s
1%/<n
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Prove that the system of equations

anzytaptz+ ot Qe =0,

anxy A apryt oo tagre, =0,
(15.0) '

A+ G2%2 + o+ AGmpZn =0

has a <olution in integers ay,re, ..., iy, not al zero, satisfying

FAEN ;!2"(1)-,"'...-: Ll

Solution: We sct
N = |(‘27m)"—7'] ,

so that

N > (2na)s5e - 1, which implies (N +1)"™™ > (2na)™ .
Hence, we have

(N+1D)" > (Cna)™(N+1)™
= (2naN +2na)™ ,

that is, as ¢ > 1,
(18.1) (N 4 1) > (2naN 4 1)" .
Set
Li = Lilyr,v2,. .o %0) = @y +aay2 b - 4 Qinth s

for 1 £ i< I (y1,42....,9n) is a vector of integers satisfying 0 <y, < N,
1 £ j < n, the corresponding value of L; = Ly, ¥2y.-.y¥n), 1 <7< m,
satisfies

—naN < L;<naN, 1<i<m,
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and so the vector (L, Ly, . ... Ly) of integers can take on at most
(2raN - 1)™ dilferent values. As there are (N - 1) choices of the vector
(¥1.Y2-+ 22 ), by (18.1) there must be two distinet vectors

@ = (Y te)y U= (2520 20)
say, giving risc to the same vector (In, Lg,..., Ly). Set
Ly o5, 1<yp<n.
A~ the two vectors v and v are distinct, not all the o, are zero, Moteover, as
Li(yi,u2s .- i) = Li(21,22, ..., 20), 1<i<m,
(x1,%2,...,45) is a solution of (45.0). Finally, |z,| < N, 1 < j < =, follows

from the fact that 0 < y;,2; < N, 1< j<n.

49. Liouville proved that if
/f(r)cg(’)llr

is an elementary function, where f(x) and g(x) are rational functions with
degree of g(z) > 0, then

/[(z)r"!’)dw = h(x)e??)
where h(x) is a rational function. Use Liouville’s result to prove that

/ == dr

is not an elementary function.

Solntion: Suppose that fc"2 de is an clementary function. Then, by
Liouville’s result, there exists a rational function h(z) such that

/c"’? dz = h(x) T
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Heuce, we have
d O
dr(h(x)c y=¢7,
and so
(19.1) W(x) = 2zh(z) = 1.

As L) is arational function we may write

{0
1 19.2) by P
glx)

where p(z) and ¢(z) are polynomials with g(x) not identically zero, and
GCD(p(x),¢(z)) = 1. Then

(49.3) K(z) = PG P (z)
qlw)?

and using (49.2) and (49.3) in (49.1), we obtain

(49.4) P'(x)g(e) - p(z)g(ic) ~ 2ap(x)g(ie) = ¢(2)? .

If ¢(x) is a constant polynomial, say g(z) = k, then (49.4) becomes
p'(e) = 2ep(x) = &,

which is clearly impossible as the degree of the polynomial on the left side
is at lcast one. Thus, ¢(z) is a non-ronstant polynomial. Let ¢ denote one
of its (complex) roots, and let m (> 1) denote the multiplicity of ¢ so that
(x — )™ '| ¢(x). Then, we have (z — )™ || ¢’(x), and tom (19.4) written in
the form
ple)'(z) = (¢'(z) - 2ep(x) - ¢(=))g(x) ,

we see that (2 ¢) | p(x), which contradiets GC D(p(x), ¢(x)) = 1, and com-
pletes the proof.

50. The sequence g, 2,... is defined by the conditions

_ Cn F i,

(50.0) To = 0, xy = [, Tngr = ] , n> 1.
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Dctermine
L= lim z,.
n=—c<

Solution: The recurrence relation can be written as

n
Tpgr = T —ﬁ_—l(xn - &y-1)y n21,
so that
(50.1) Tppr — Tn = (=1)" (.r - z0) = (—‘m n>1
. nt1 <n n+ 1 n +, = 1.

The equation in (50.1) trivially holds for n = 0. Heuce, for N > 1, we have

N-1

TN = Z(In{—l_xn)

n=0

- e

rs n+41

and so

L= Inn Ty = lim
Ne—eo N—voo"_ n+41

thatis L =In2.

51. Prove that the only integers N > 3 with the following property:
(51.0) if 1 <k < N and GCD(k,N) = 1 then k is prime,

are
N =3,4,6,8,12,18,24,30 .
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Solution: It is casy to check that 3,4,6,8,12,18,24, 30 are the only integers
< 121 with the given property. Suppose that N > 121 is an
integer with the property (51.0). Define the positive integer u > 5 by

{51.1) < VN < pugrs

where py denotes the k-th prime. From (51.1) we ser that pj < N ,j=
1.2,...,m, and s0 by property (51.0) we must have p; | N, for 7 = 1,2.... 0.
As p1,...,p, are distinct primes, we must have

(51.2) Pipz-pn | N,
and so, by (51.1) and (51.2), we have

(51.3) pppn SN ’)721-04 .
By Bertiand’s postulate, we have

Put1 < 20ny Pn S 2Pno1,

and so
¥ Ph
(51.4) Pa-ipn 2 2 il

Using the inequality (51.4) in (51.3), we obtain
MP2 Pu-2Pi g[8 < Piyy

that is pypa-+pn—2 < 8. Since pyp2 = 6. and pyp,p3 = 30, we must have
n—~2<2, and o < 4, which is impossible, proving that there are no integers
N > 121 with property (51.0).

52. Find the sum of the infinite series

1 1
1t6”

1 1 1
stn T wt



118 SOLUTIONS

Solution: We begiu by obscrving that
1 1.1 1 1 1

S oo i7ats et et

/(l—:l 4 2" ;rs-l-.a:"’— <) da

- / (1 A0, ™ d
Jo
L
(£
[) l-a:"“'

B /" tttaq ) de.
I APUI I I
Now, decomposing into partial fractions, we have

il

qz+l - a b
APl e+l zfyextl .z"-| dr+1°

R
(———3/5 d-——f‘c
2

where

Thus, we have

S=oal.+bly,

I = /’ dx I, /' dz
R ERTERD T o 224 dz4 1

dz rctan(‘li—{») t <1
242541 \/l 2 M\ T ‘

and by the fundamental theorem of ralculns, we have

t
— arct.
e an( 1—17))

where

Now

1 dx 1 14t
[) A1l | JI-p (“ma" (\/1 -12)
1 -t
\/]—ﬁa.rcl.ml (\/l—:{—l) .

1l
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Tlence, taking ¢ = (1~ /3)/4 and ¢ = (1 + V/3)/4, we obtain

I, = \/I_O__bi— arctan (\/r,%\/_-?,)

)

and o ) L
1, - V’lmf}r 3\/:) arc{an (\’/5 2\/5)
" 5 ‘ ‘! - \/;_'—' .
.\(:\\
cos( 7/10) = (\/m LAB)/A, sin( 7 /10) = (Vo - 1)/,
cos( 37 /10) = (\/m 2/5)[4, sin(37/10) = (VB4 )/,
so that

. _ fe ot

5—-2V5 S+ 2V5

tan(w/10) = ——————\/ 7 4 , (an(3%/10) = V———j/% v .
2) u

Hence, we find that

-
Lo [10 - zf I - r\/l()LZ\/-'_)
= d= =\ —

10

‘T 5 5

5
5 - 100 35 u\f)\’l =25, \/')\/m
= 100(3(\/6.1) 10 - 2»»1(\/3—1)\/10”\/_)
= mo(mu\/lo z\/)
= E0(3\/10+2s/ﬁH/Io_—'z\/ﬁ).

as required.

and so

v
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53.  Sewicircles are drawn externally to the sides of a given triangle.
I'he lengths of the common tangents to these semicircles are I, m, and n.
Relate the quantity

Im mn  al
w1 m

to the leugths of the sides of the triangle.

Solution: Lot the vertices of the given triangle be A, .. Let . B¢

be the centres of the semicitdes a 302 drawn on BO W AD
respectively. Let DI, PG be the common tangents to 3 and 9, v and a.
o and g3 respeetively, Join B'D,C'E and draw C'K from 7 perpendicular to
B'D. Hence, as KC'IZD is a rectangle, we have KC' = DE = 1. Lt

|AB] =2, |BC|=2a, |CA=2b.

‘Then, we have

|B' (' =a, 'B'Ki=1|b-d,
and so [

= \Ja2 - (b= 02,

tha is — . e

= \/(a “bbhe)akh-r).
Similarly, we have

m = |FG| = J@Tb-N-aTb 1o,
no= I = e FbF@=b7c),

and s0 | i
an.—_-—n-Hn»l-c, ':l:-a--b»lwr. ?=a-l-b—c.
giving
mn nl lm
(53.1) Tttt Tatbe,

5o that the left side of (53.1) is the semiperimeter of the triangle.
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54. Detenmnine all the functions /7 : R* —» R having the propertics

(i)  H(1,0,0,1) = 1,

(51)  H(da,b,Ae.d) — AH(a,b,c,d),

(#¢4) H(a,b,c,d) — —1(b,a,d,c),

(7v) H(a-+c,bct f,d) = H(a,b,c.d) - H(e,b, f,d),

whete a,b.e,d, o, f, X are real numbers.

Solution: By (iii) we have
H(1,1.0,0) = -11(1,1,0,0), 11(0,0,1,1)= #(0,0,1,1),
so that
(54.1) 11(1,1,0,0) = #(0.0,1,1) = 0,
and from (i) and (iii) we have
(51.2) H(0,1,1,0) = - #(1,0,0,1) = =1.
Hence, we obtain

H(a,b,e,d) —  [I(a,b,0,d)+ 1(0,b,c,d) (by (i)
= all(1,b,0,d) + cH(0,b,1,d) (by (i)
~ —aM(b,1.d.0) - cll(b,0,d,1) (by (#))
= —a(H(b.1,0,0) |- H(0,1,d,0))

—c((b,0,0,1) + H(0,0,d,1)) (by (iv))
= —abH(1,1,0,0) - ad H(0,1,1,0)
~bell(1,0,0,1) — ed H(0,0,1,1) (by (41))
= —ab(0) — ad(-1) - be(1) - ¢d(0)
=ad - bc,

that is

b
(a,b,c,d) = ‘: J ’ .
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55.  Let xq,..., 2 be the complex roots of the equation
baz" 4 ba, =0,
where ay.. . a0, are o (2 1) complex numbers. Set
A =~ max |agf .
! lfkgn' LI

Prove tha
LN [ B T D T

Solution: Set
JGz)= " taz" by

and suppose that one of the zj, 1 < 7 < =, is such that |z;{ > 1 + 4. Then

we have
i o @\,
|75 (1 b=t ,f)
41 Ij

0= /()i

- |3;|"|‘+';L,'l( 4oy :j_::l
I &

loa| lnnl)
> e (1= 2 -
2 (1 ] -
A A
ot (1 )
’ I Iz
(.
25! |z
A
e )
' 7 |5jl -1

Gi-(441))
=51 =1

N

A%

(
= |3">

> 0,
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which is impossible. Thus all the roots z;, 1 < 7 < n, of f(z) must satisfy
|zl <1+ A.

56. If m and n are positive integers with m odd, determine

d=GCDER™ - 1,2" +1).

Solution: Delinc integers & and [ by
2"~ 1 =kd, 2" 11=1Ud,

aud then we obtain
M=kdt 1, 2%=Ild-1,

and so for integers & and ( we have

27" = (kd | )" =ad +1
2™ = (ld - 1™ =td- 1, asmisodd.

Hence, we have (s - t)d — -2, and so d divides 2. But clearly d is odd, so
that d = 1.

57. If f(=) is a poly nomial of degree 2m | 1 with integral coefficients
for which there are 2m + 1 integers ki,...,k2, 41 such that

(57.0) Jth)=...= f(kzmar) =1,

prove that f(z) is not the product of two non-constant polynomials with
integral cocfficients.

Solution: Suppote that f(z) is the product of two non-constant polynomi-
als with integral cocflicients, say

Jiz) = g(z)(z) ,
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where » = deg (¢(z)) and s = deg (h(x)) satisfy

r+s=2m+1, I<r<s<2m.
Clearly, we have r < m. Now, for 7 = 1,2,...,2m + 1, we have, from (57.0),

1= f(k) - g(k)hik.) .

As g(ki) is an integer, we must have

g(k;) = 1, i=1,2,...,2m+ 1.
Clearly, either +1 or —1 occurs at least 7n + 1 times among the values of g(ki),
1 <4< 2m+ 1, and we let ¢ denote this value. Then g(z) — ¢ is a polynomial
of degree at most m which vanishes for at least m + 1 values of 2. Hence
the polynomial g(x) -~ ¢ must vanish identically, that is, g(z) is a constant

polynomial, which is a contradiction. Thus there is no factorization of f(z)
of the type supposed.

58. Prove that there do not exist integers a.b, c,d (not all zero) such
that

(58.0) a? 4 5b% — 2% - 2cd - 3% = 0.

Solution: Suppose that (58.0) has a solution in integers a,b,¢,d which are
not all zero. Set

m = GC D(a,b,c,d),
ay =afm, b =blm, a=c/m, d=d/m.

Then clearly (a1,b1,61,dy) is a solution in integers, not all zero, of (58.0) with

GCD(ar,by,a,dy) = 1.
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llence we may suppose, without loss of generality, that (¢, b, ¢, d) is a solution
of (58.0) with GC D(«,b,¢,d) = 1. Then, from (58.0), we obtain

(58.1) 2(a® + 5b6%) = (2¢ + d)? + 5d%,

so that 2a2 = (2c¢ + d)?  (mod 5). Since 2 is & quadratic nonresiduc (mod 3)
we must have

(5%.2) a=2+d=0 (modbH).

Set.
a=>X. 2c +d - BY
where X and Y are integers, so that (58.1) becomes
25X% 4+ b%) =5Y2 4 2.

Thus we have 26 = d2 (mod §). Again, as 2 is a quadralic nonresidue (mod
5), we deduce that

(58.3) b=d=0 (mod35).

Appealing to (58.2) and (58.3), we see that « = b=c=d =0 (mod 5),
contradicting GC' D(a,b,c,d) = 1. Hence the only solution of (58.0) in integers
isa=b=r=d=0.

59. Prove that therc exist infinitely many positive integers which are
not representable as sums of fewer than ten squares of odd natural numbers.

Solution: We show that the positive integers 72k+42, A =0(,1,..., cannot
be expressed as sums of fewer than ten squares of odd natural
numbers. For suppose that

(59.1) 2% +42=zt +a5+ -+ 22,

for some k > 0, where z,...,z, are odd integers and 1 < s < 10, Now,
x? =1 (mod 8) for i = 1,2,...,s, and so considering (59.1) as a congruence
modulo 8, we have

s=2 (mod8).
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Since 1 < 5 < 10 we must have s = 2 and so

(59.2) 2%k + 12 =2 4 2%,

Treating (59.2) as a congruence modulo 3, we obtain
2f b 23=0 (mod3).

Siuce the square of an integer is congruent (o 0 ot 1 (mod 3). we mnst have

xy = 2e = 0 (mod 3). Finally, reducing (59.2) modulo 9, we obtaiu the
contradiction 6 = 0 (mod 9).

60.  Lvaluate the integral

% sin ka cosk x

(60.0) (k) = [J

dz

where k is a positive integer.

Solution: By the binomial theorem, we have

. ko (k) .
(60.1) (¥ 4 1)f = 2: (7.)(,1",- )

r=0

As
(¥ 4 1)F = e (e™ | e = (coskz |- isin kx)2F cos® x|

the imnaginary part of {€%'® 4 1)¥ is 2 sin ki cos® x. Equating imaginary parts
in (60.1), we obtain

ko (k (K
2% sin kx cosk x = Z ( ) sin2rx = L ( ) sin2rz .
r=0 T y=1 T
Thus, nsing [¢° 827 dr = Z, we have

k .
1 Ok % sin 2rx
1 = 03 (T> [

r=1
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as required.

61. Prove that

is an integer for 1 —. 1,2,3,....

Solution: JYorn=1,2,..., we have

1 (a0 2! U
n+ 1l (n ) (u!)7 YR
2! ((2n--2) - (2t 1))
(uﬁ2 2|1
_'2_"! (,. 2n | I)
THANETE

2n! (20 | 1)

(7!)z T aln k- 1)

= 2 e\ [2n 1 )
n n
As (*%) and (*"*') are both integers, this shows that = (") is an integor, as

"
was required to be proved.

Second solution: (duc to S. Elnitsky) TForn =1,2,... we have

L 22 _ w1
n+l\n) T ()2 ul
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2n!
nt(n4 1)

on!
= mri ((n41)—n)

2! 2n!
a2 " (n-- Dl(n4 1)

-0

As 11"") and (""'_".) are hoth iutegers, this shows tHuat "'}i(”':) is an integer.

62. Find the sum of the inlinite series
o~
S
525 2
S e ,
a0 @ 41
where a > 1.

Solution: We have fora > 1

2" 2%(a?" - 1)
a4 1 T Ty
.Zn(a'z" + l) —omtl
- a2t |
m -2n+l
= Tl @
so that
S_‘*;( LA )_1-
- g \a® -1 a?t a-1

63. Lot k be an integer. Prove that the formal power series

ViFkz=1+az 4 az? 4 ...
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has integral coefficients if and only if & = 0 (mod 4).

Solution: If 4 =1 (mod 2) then @ = k/2 is not an integer and il I =
2 (mod 4) then ap — -k%/R is not an integer.  When /o -
0 (mod 1), we have for n = 1,2,...

. (I,/"z) o

Lo DU e e
al
135 (20— 3)
- =1 _ "
= (=) Y] k

(20 — 2!

il (2m-2 (k)
=200 -n(n--l 1/ 7

-2
n-1

n

- (_l)n~~l

which is an integer since /4 is an integer and L( is an integer by

Problem 61.

64. Tet m be a positive integer. Fvaluate the determinant of the
me X me matrix M,, whose (4, 7)-th entry is GCD(1, 7).

Solution: Let C'y,...,C,, denote the columns of the alrix M,,. We deline
Ny, 1o the weatrix whose columns Dy, ..., D, are given by

Dy =C;, i=12...,m-1,
l)"' = z:d(_l).r(d)cm/d 1

where the sum is taken over those squarcfree integers d which divide in.
Clearly, as D,, = (. +J, where .J is a lincar combination of the ;, 1 <7<
m —~ 1, we have

det M,, = det N,, .
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For 1 £ 4 <, the entry in the i-th row of D, is (writing (1, j) for GCD(i, 7))

Z (- l)f('l)(i, m/d) H Z (=1 )7('!)(1',7)" /d)

A L LT
Waquarefiee dsquarefien
= I (.- u’.ﬂ""))
» e
| PR cilzm,
l 0 Wl om0

() ,ili=m,
0 ,if1<i<m -1,
Hence, expanding the determinant of N, by its m-th columnn, we obtain

det ¥, = d(m)det Nyy

and so
det M, = ¢(me)det M,y .

Thus. as det My == | = ¢(1), we find Dt

det My, = p(m)d(m - 1) - 2)e(1) .

65. Let I and m be positive integers with [ odd and for which there
are integers  and y with

I =2 y?
o= 22 p Rry 4+ 17y

Prove that there do not exist integers v and ¢ with

. I —u? el
(65.0) { m - 5u? ¢ 16ur | 1322,
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Solution:  Suppose there exist integers w and » such that (65.0) holds. Then,
we have
= 5+ 8(2uv +v?),

so that m = 5/ (imod R). Henee, we must have
2 Lrey + 1797 = 5x2 4 597 (mod S),
Lt 1
422 Fayt =0 (mod &),

and so
I=2z2ty? =0 (mod?2),

which contradicts the condition that [ is odd.

66. let
1 | (=1)n?
Up=1-- L=, ¢

2 3

Prove that 75", a, converges and determine its sum.

-In2

Solution: We have

1 Ve
[(l—z L:c"——-ni-(—])""'z"")dz—-[ e
Jo

Jo 1T:;
_ /I !-l-(—l)"_la:" ([I /l dz
B 1+x Jo 1 vz

1 (_I)n—lzn
/o 1tae dr

Hlence, for any integer N > 1, we have

il

ay

N N _ -1
S

n=1 n=)"

dz
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/olHZ( 1)~ 1g" dx

1 (1‘ + (_1)N+11N+l)

= L (1+2)?

dr + (-1

1 ° 1 N4
) (14 2y I (T &

and so

N T | [ Y
n = y lx = / —d
"Z;,“ Jo Wrar ™| T Jo (1422 ™"

1 7
/ 2N
Jo

1
N+2'

IA

Letting N — ox- we sce that Y 52, an converges, and has sum

~/(’I(T"—Tz‘—'—ﬁd.‘::-—-‘/Ol (ﬁ;—(l—;l—t—)&) dz =1n2-1/2.

67. Lot A= {a;|0<i<6}beasequence of seven integers satisfying
0=ay<a <...<as L6
ori—=0,1,...,6 let
Ni = number of ¢; (0 < j < 6) such that a; = 4.
Determine all sequences A such that

(67.0) Ni=a6-i, i=0,1,...,6
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Solution: et A be a sequence of the required type satisfying (67.0) and

let k denote the number of zeros in A. As @, = 0 we have
k> 1,and as k = No = ag we have & < 6. If & = 6 then it follows
that A — {0,0,0,0.0,0,6}, contradicting N¢ = ap = 0. Hence, we have
1<k=as<3,and so

(67.]) Nkzl, Nk.;.l:“':Nc:O.
Thus, by (67.0) and (67.1), we obtain
(67.2) [T L T u S | F A AL

and so
k=No=6~(k+1)+1,

that is & = 3. This proves that A is of the forin

(67.3) A ={0,0,0,a3,04,as,3} ,
where
(67.4) l1<az<as<as<3.

Clearly, we have 0 < N; < 3. If Ny = 0 then, by (67.0), we have the
contradiction as = Ny = 0. If Ny = 1 then, by (67.0), we have as = 1, and
50 (67.4) implics that a3 = a4 = as = 1, giving the contradiction M = 3. If
N1 = 3 then az = a4 = a5 = 1 and so, by (67.0), we obtain the contradiction
as = N) = 3. Hence, we sce that Ny = 2sothatay = a4 = 1and as = N, = 2.
The resulting sequence

A = {0,0,0,1,1,2,3}

satisfies (67.0), and the proof shows that it is the only such sequence to do
s0.

68.  ILect ¢ be a finite group with identity e. If (7 contains clements g
and & such that

(680) !'5 =€, ghg—l = h? ’
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determine the order of /1.

Solution: If /i = ¢ then the order of /i is 1. Thus we may suppose that
h# . We have

Ghg™® =gghg™ ¢! ~gh*a™' = (ghg™') =07,
Pha™ ~—gla*hg V"t cghty ! (ghy™")" - h*.
ghg T = g@tha VT —aligT - (ghg 'Y

T 3 R L e A

and so, as ¢® = ¢, we obtain L = 1% that is ' = ¢. Thus the order of b is
31 as h # e and 31 is prime.
69. Let @ and » be positive integers such that
GCD(a,b) =1, a#b(mod?2).
If the set § has the following two propertics:

(¢) a,b€S,
(#) z.y,z€Simpliesr+y+2€ 8,

prove that every integer > 2ab helongs to S.
Solution: 1ot N be aninteger > 2ab. As GC (a,b) = 1 there exist integers
k and [ such that
ak+0l = N

Lurthermore, as

/ -k ak + bl .
z_(—h)_ ab _u_/'>2’
there exists an integer ¢ such that
-k

D~

- < 1<
A t<t+1<
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Define integers u and v by
w=k+4+0l. e=l-al,

and integers x and y by

{ @ u, y-v, ifu+v=1(mod?2),

r=uth, y=—vo-a ifut+o2z=0(mod?2).
It is casy to cheek that
Noxatyb, 2250, y20. a4+y=1(mod2).

We show below that 9 contains all integers of the form

rat+yb, >0, y>0, x+y=1(mod?2),

completing the proof that N € §.
For m an odd positive integer, let P, be the asserrion that za +yb € §
for all integers x and y satislying

£>0. y>20, z+y=1(mod2), x+y-—-m.

Clearly Py is truc as a,b € § by (7). Assume that £, is truc and consider an
integer of the forn Xa + ¥'b, where X and ¥ are integers with

X>0, Y>20, X+Y=1(mod?2), X +Y=m+}2.

Asm -+ 22> 3 at least one of X and ¥ is > 2. ‘Then, writing Xa + Yb in the
form
(X=-2a+Yb)+ata ,ifX>2,
{ (Xa+ (Y =20)+b+0b ,ifY >2,

we see that Xa + Yb € §, by the inductive bypothesis, and so Ppyy is true.
Hence, by the principle of mathematical induction, P, is true for all odd
positive integers m.

70.  Prove that every integer can be expressed in the form 27432 522,

where z,y, 2 are integers.
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Solution: (due to L. Smith) T m is cven, say m = 2n, then
ma=(n -2 4 @n—1)2-5n- 1),
whereas if m is odd, say e - 2n 4 1, then

m = (n+ 1)? 4 (20)° -5n*.

71. Iivaluate the sum of the infinite series
m2 In3 In 1 In&
2 3 1 5

Solution: For x > | we have

* ot * dt
Inz = — / — =2y ~2< 2z
ne= |5 <.| Ji NG NG

and
~1j2<z-[e]-1/2<1/2,

so that for any ¢ > 1| we have
*|(ne-1) T/ 41) L
/1 | 7 (x —[z] - 1/2)| dx | o 3 d
8 [
<3 /; 3?2

¢

A

W NIw

Thus, the integral

* (Inxc -1
l:/; g—"%——l(:c—[:c]——l/‘z)dz



SOLUTIONS 137

is absolutely convergent.

Now, one form of the Buler-MacLaurin sumimation formula asserts that if
f{z) has a continuous derivative on [1,n), where » (> 1) is a positive integer,
then

Z Sy = 50+ JO) + [ oy det [T 12
Taking f(r) - Inafx, we obtain

w1 R VR T (Tha ) )
R - - ] - 12) de
=k 2n + 2 +/| x? (i = Le] - 1/2) e
Setting
2wk In?a
FE(n) = - - =
SIS
=1
and lefting n — oo, we sce that lim, o, F(n) exists and has the value ~1.
T'hus
Jim (E(20) ~ F(n))

exists and has the value 0. Next, we have the following

2n
In» 2 In3  lud In2n
gy e - Z2e e L
‘;( ) T 2 3 + 4 + 2n
Lt (e g )
=\t n 2 t3 n
_ (In2+4MWn1) (In2+1n2) (2 +ln) Snk
- 1 + 2 ot n Z—; k
1 I " Ink & lnk
= T mdeee b — — g
In2( ts+ +n)+k§k gk

j 1 1 In%n
= InZ(I +2+...+.n)+ (L(n)+—2-»)

- (E(?n) + '"f,-,z—")
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1 1 In?2 . .
= In2 (l + 3 -+ w Inn) -5 + (E(n) - E(2n)) .
Letting # — oo, and remember3ng thay

d
lim (Z' -lnn}) =y,
l.-:|l"

Y-t

where 7 2 057721 is Faler’s conshnt we obtain
>, ;o 1.
b 5 .
Z(—l) F=7In2 _—)ln 2.
=2 <

72. Determine constants 6.6 and ¢ such that
-1 o e
Vi=S VVakd + DR ok 41 - ak® ¥ bR ek,
k=0
forn=1,2,....

Solution: For k =0,1,..., we have
(VE+1- \//'.-')3 = (k4+ DVEET -3k + 1k 4 3kVET 1 — 6VE
bk + OVEFT - (4k + 2)Vk

SRS T - i 77

V16K + 2k {0k 4 1 - VI6KS ¥ 2442 4 OF

1]

1}

so that

(’/—\/Iﬁku 12kt 4 Ok + 1~ VIR 4 282 1 9k = VEF T - VE,

and thus
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n—1 —
S V16K § 24K% + 9K + 1 - VI6KT + 24K% 1 9F
k=0

n-1
- Y VEFT-VE) = V.
5=0

Ilence we may tale a = 16, b =24 , and ¢ = 9.

73. Let o be a positive integee and a,b integers such that
GCInabyn) = |
Prove that there exist integers a,,b) with

a) = a(moda), by =b(modn), GCMNayby)=1.

Solution: We choose @y to be any nonzero integer such that
(73.1) ey =a (modn).
Then we set

by=b+rn,

where 7 is the product of those primes which divide a; but which do not divide
cither b or u. If there are no such primes then 7 = 1. Clearly we have

b =h (modn)

We now show that

GCD(ar,by) = 1.
Suppose that GCI)ay,by) > 1. Then there exists a prime ¢ which divides
both a, and b,. We consider three cases according as

(i) ¢ divides b,
(1) ¢ docs not divide b but divides n,
(iii) ¢ divides ncither b nor n.
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Case (i): Asq|b, q| b, and by — b = rn, we have ¢ | rn. Now, by (73.1),
GC D(ay,b,n) = GCD(a,b.n) =1.

Since ¢ | @) and ¢ | b we see that g does not divide n. Thus we have ¢ | r,
contradicting the definition of r.
Case (ii): This case clearly cannot occur as by = b+ ra, yet g divides both
by and n, but docs not. divide b
Case (iii): As ¢ | a; but does not divide b or =, we have 4| r. Since. 4| by,
q |7 and by = b+ rn, we must have ¢ | b, which is impossible.

‘This completes the solution.

74. Forn = 1,2,... let s(n) denote the sum of the digits of 2". Thus,
for example, as 28 = 256 we have 5(8) = 24546 — 13. Determine all positive
integers # such that

(74.0) s(n)=s(n+1).

Solution: Write

2" = am10™ + @1 10™ " 4+ 4 @10 + g,
where ag, ay,. .., a;, are integers such that

1<am<9; 0<a <9, 0<kL<m=-1,

then
" =ap +am-1 4+ a1 +ao=s(n) (mod 3).

and so
stn41)=2"" =22"=25(n) (mod 3).

Hence, if s(n + 1) = s(n), we nust have

s(n)=0 (mod3), 2"=0 (mod3),
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which is impassible. Thus there are no positive integers satisfying (74.0).

75. Evaluate the sum of the infinite series

, o 1
S = —_—,
oy mn(m + n)
S O(n,p1=1
Solution: We have
B o0 1
__*I_._, - _1_ 1_m+n—| dz
mn=1 Tll'll(ﬂl + n) mn=1 mn Jo
13 g™ >z dr
- L(ZT)ES) T
11n%(1 —
- / In(1-1z) d
0 T
< et —u
= /0 (—l_e_uvjdu (z=1-¢7")

o 0o
= / n? Ze‘"" du
o =

1
Xt
= Z/ wle " du
n=1"0
&2

On the other hand, we have

m,vz\=l mn(m+n) dé:, ooy mn(mtn)

GCD(mn)=d
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I

'3 o 1
% X P

d=1 g,r=1
GC(gr)=1

S5
A=1 & gr=1 qr(g+ 1)
D) -1

- (59)

so that S = 2.

76. A cross-country racer runs a 10-mile race in 50 tminutes. Prove
that somewhere along the course the racer ran 2 miles in exactly 10 minutes.

Solution: For 0 < 2 < 8let T(xx) denote the time (in minutes) taken by the
racer to ran hetween points z and » -+ 2 miles along the course.
The function 7'(#) i~ continuous on [0,8] and kas the property

(76.1) T(0) -+ T(2) -+ T(4) + T(6) + T(8) = 50 .

The equation (76.1) shows that not all of the values T(0),T(2),7(4), T(6) and
7°(8) are greater than 10 nor are all of them less than 10. Hence, there exist
integers 7 and s with 0 £ 7,5 < 8 such that

T(r) € 10 € T(s) .

Then, by the interinediate value theorem, there exists a value y, r < < &,
such that T(y) = 10, and this proves the assertion.

7. Let AB be a line segment with midpoint Q. Let R be a point on
AB between A and O. Three semicircles are constructed oa the same side of
AR as follows: Sy is the semicircle with centre O and radius|OA| = |OB}; S,
is the semicirde with centre R and radius [AR|, meeting RB at ('; Sy is the
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semicircle with centre $ (the midpoint of CB) and radius [CS| = |S3]. The
common tangent to 92 and Sy touches S; at P and Sy at Q. The perpendicular
to AB through € mcets $; at D. Prove that PCQD is a rectangle.

Solution:  We give a solution using coordinate geometry, The coordinate
svstem is chosen so that,
A -1L,0). O 10,00, B (1.0)
Then we have K = (=a,0), where 0 < a < 1, and hence
C=(1-2a,0), 5—(L-a0)
‘I he equations of the three semicireles are given as follows:
S gt =1 ,
Sy o (mta) ryi=(1-a)?
Sy o (rta-1) byt =a?
The perpendicular to AR through C meets §) at
D= (12,2 - a?).
The equation of the common tangent to S» and Sy is
(1 - 2a) -+ 2y\/ﬂ———a7 = 1 —2a-2a*,
and this line touches $3 at the point
P = (2a% ~ 4a-+ 1,201 - a)a - a?)

and Sy at the point
Q = (1 - 20*,2a\/u - a?) .

The slope of PD is

2av/e = a? _ \/_u
2a 20>  Vl1-a
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and the slope of PC is

21— a)Va—-d* _ _\/I_;_(;
_— —-

2?2 - 2a ’

The product of these slopes is — 1, showing that PC aud P D are perpendicular.
that is /C'PD = 90°. Similarly,

LPDQ = [DQC - 1QCT = 90,

so that 'DQC i a rectangle.

78. Determine the inverse of the » X 7 matrix
011 1
L o1 ... 1
(7%.0) =L o ... v
) I T IO (]

where n > 2.

Solution: Set

00 0 111 1

010 ...0 L1 1
r=]00 1 ... 0 Gl L] [

000 ...1 11 1

50 thar
S=U-1I, Ut=nU.

Tor any real uwumber ¢, we have

(U =1I)el' -T) = eli* -(c+ N+ T
= (en—=(c+ IV + 1.
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Thus, if we choose en — (e 1) = 0, that is ¢ = 1/(n - 1), we have

-1 w -n' =
2 1 A
n- l n-1 n—1
L 2-n L
- n-1 n-~1 ol
[ - 2z
n=1 =1\ n-1

79. Evaluate the sum
. -
(79.0) Stn) = S (=1)F cos" (kx /),

k=0

where u is a positive mteger.

Solution: Set w = exp(7i/n) so that

n—1 w E\ "
§(m) =3 (-1 (‘“—*2—-)

k=0

Hence, by the binomial theorem, we obtain

. o kn ) k(n-20)
S(n) 2" W Z e

k=0 =0
(IR X k(zn-20)
K(2n--
-2x()E.
=0 k=0

6B

that is §(n) = o /27",
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80. DNetermine 2 X 2 matrices I# and C with integral entries such that

(80.0) [ "(', _,; } =B CR.

Solution: Let
30 that

and thus
AZ+3A+20=0,

giving
AP 4347424 0.

Hence, we have
(A+IP=A+3A7 434+ 1=A+1,

aud so
A=A+ -1,

and we may rake

o 1] . . [-1 o
If—z‘l+l—[0 _|]. (——l—[ 0 —I]'

81. Find two non-congruent similar triangles with sides of integral
length having the lengths of two sides of one triangle equal to the lengths of
two sides of the other.
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Solution: Iet the two triangles be ABC and DEF. We suppose that

|AB| —a, |AC*=b, |BC|=c,
“)E‘I:h, |l)l"| =c, l[l,'/-’l =,

and that
(S 1) a< b

N AABC and ADEFF mie stnilar, we have

a b
b ¢ d’
so that
(81.2) c=0fa, d=b"fa*.
From (31.1) we have
(81.3) 1<bja,

and from (81.2) and the inequality ¢ < @+ b we have

b2
—<a+b,
a

so that

b o145 s
BV s e,

1.
(81.4) -
To satisly ($1.3) and (%1.4) we choose bfa = 3/2. say @ = 21 and b = 31,
‘Then, by (81.2). we have

o 2N
¢c= d—

2’ 4
To ensure that ¢ and d are integers we choose t = 4 so that

a=8. b=12, ¢=18, d=72T.
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The triangles with sides 8, 12,18 and 12, 18,27 respectively, meet the require-
ments of the problem.

82. Let a,b,c be three real numbers with @ < b < ¢. The: function
f(z) is continuous on [a,¢; and differentiable on (a,¢). The derivative f/(z)
is strictly increasing on (a.¢). Prove that

{82.0) (¢ b)f(a)+ (b—a)f(c) = (¢ = a)f(h) .

Solution: By the mean-value theorem there exists a real number u such
that

JO) = fla) _ o,
b a = f(u), a<u<b,
and a real number v such that
c)— f(b
f—(—z—_zi—)- =f(z), bcuv<ec.
As ¢ < u< 1 < cand f'is increasing on (a,c¢), we have

f(@) <),

and so

1)~ J(a) _ J(e) = J1b)
b-a c—b '

Rearranging this incquality gives (82.0).

83. ‘The sequence {am | m = 1,2,...} is such that am > @4 >
0,m=1,2,...,and 3__, a;, converges. Prove that

~o

Y mlan — )

m=1
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converges and deterinine its sum.

Solution: Lot ¢ > 0. As X2 a,, is a convergeut series of positive terms,

it

there exists a positive integer N(¢) snch that
(83.1) 0< gt + Ampz -+ <¢f3,

for all m > N(cr Let m > 2A ()4 1. 1021s even, say o = 2k, where b > N{d),
from (¥3.1) we have

kag < gy 4 gz 4 - a2 < f3,

so that
na,, = 2kay, < 26[3 < €.

If w is odd, say n = 2k 4 1, where k > N(¢), from (83.1) we have
kagrsr < Arpz + @rpst oo+ @rgr < ¢f3 .

50 that
nay = 2kageqn 4 aziegr < 2¢[34 ¢/3=c.

We have sbown that

0< ne, <e¢, foraln>2N¥()+1,

and thus
Iim ney, =0.
n=rexs

Next, set
n
Sp=Y kak—arp), n=12....
k=
We have
n n‘
So = Y kar =Y kary
k=1 k=1
n41

2: kay. - E(k ~ Dag

k=1 k=1
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Z(k — (k= )ay — napp

k=1

n

Z g — Ny y -
k=1

Letling n — oc, we see that lim,,—... 3, exists, and has the value Y77, i, as

]

]

m nanyy = im (04 g - auy) =0-0—0.
nN— 0 sty

llence, D772, klag — axy1) converges, and its sum is Y52, ox.

84. The continued fraction of VD), whete D is an odd nonsquare
iuteger > 5, has a period of length one. What is the length of the period of
the continued fraction of (1 + VDY

Solution: The continued fraction of VI is of the form
VD= [ a; 5] .
where a and b are positive integers, so that

VD-a = —2t

b+vVD-a,
giving

VD = D+f12—ab—l
20—

As D is not a square, /D is irrational, and we must have

b=2a, D=a*+1.
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Furthermoie, as I is odd and greater than 5, we have a = 2¢. ¢ > 2 and
D = 4c? + 1. It is casy to check that

4]

[ [2(:~ L+vD
‘(',-_.-»_.;r . L [ =
[ ! I+ \//)] -
_(.’-*%ll”:f) 1 L Qe )
[ 1 _ |21+ vD 2 - 1
L(L‘bﬂ?) _1 ) 2 -
- 2 N -

I _[2e=n +\/l)] \
('z.-—|2./7)) —(2c-1) 2c ’

so that the continued fraction of 3(1 + VD) is
[e; 1,201,

as 2¢ — 1 > 3, and its period is of length 3.

85. L.et G be a group which has the following two properties:

(85.0) (?) G has no element of order 2,
e (i) (ay)? = (yz)?, forall c,y € G

Prove that G is ahclian.

Solution: For 2.y € G we have

aty

it

(Ley™ W)%y
(g™ )y (by (850)(i))
(yzy™)yay™ M,

I
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that is
(85.1) Ty = yx?.
Next, we have
'y e = w7y le
= zy Nz "2z,  (by (85.1))
that is
{85.2) ey cag !
Similarly, we have
(85.3) ylaly =y
Then we obtain
(zye"ly™ M) = zy(z 'y 'o)yely !
= ayley'z Ny lyTt (by (85.2))
= zyx(y 'z ly)z 7y !

= zyx(yr~ly Nz ly! (by (85.3))
= (zy)(e 'y

= (zy)(yz)?

= (ya)(ye)~? (by (85.0)(ii))
1,

and thus, as (& has no elenents of order 2, we have
zyzlyTt =1,

that is cy = y=, proving that (; is abelian.

86. Let A = [a;;] be an n X n real symmetric matrix whose entries
satisfy
n
(%6.0) ai=1, Y |lul<2,

=1
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forall 1 = 1,2,...,n. Prove that 0 < det A < 1.

Solution: Tet A denote one of the cigenvalues of A and let x (# 0) be an
cigenvector of A corresponding to A, so that

(86.1) Az =g .

Set x = (@, ...,3,) and choose ¢, | <1« n, so that

vl ll;);nsxnlr,l AR

From the 7-th row of (86.1), we obtain
n
Zu;,z,‘ = Az;,
j=1

50 that "
(2- |):l.‘,' = Za,'j:r, s
=1
F#

and thus

=l

i}

n
1Y aijs4
=1
it
"
< Y sl
i=
i#i
A\
et 3 lais
i=1
i#i
Ixi‘ )

IA

IA

showing that

(86.2) M=-1<t.
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Since A is a real symmetric atrix, A is real and from (86.2) we sce that
(86.3) 0<A<2

Lot Ay, A denote the u cigenvalues of A. Fach A; is nonnegative by (86.3).
Thus we have

O <detd = N\peeod,

< ( D424+ )

o (! e )’
]

- G

T \n

N O

87. Let R be a finite ring containing an element 7 which is not a

divisor of zero. Prove that R must have a multiplicative identity.

Solution: As & is a finite ring there exist integers v and n such that
(R7.1) ™= 1<m<n.
We wish to show that

(87.2) r=r*

’

for some integer & > 2. Il = 1 we may take k = n. If m > 2, from (87.1),
we have

(e o= 0
As 7 is not a divisor of zero, we must have
(87.3) ol el g,
If m -2 we may take k=n - 1 (> 2). If m > 3, from (87.3) we have

7.(rm—-’l _ 7.n-2) =0
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As 7 is not a divisor of zero, we must have
Tm—l _ Tn--z =0.

I m .. 3 we may take k -- -2 (> 2). Continuing in this way, we see that
(87.2) holds with k = 1 — m + 1 (> 2). For any = € R we have from (87.2)
aro.. .L'I'L

and so
(¢ ot ! oL

As 7 is not a divisor of zero, we see that
(87.4) z=ark 1,
Similarly, we have

(87.5) r=r

n

From (&7.4) and (87.5) we sea that 7~ is a multiplicative identity for R.
P!

88. Set J,, = {1,2,...,n}. For cach non-empty subsct S of J;,, define
w(S) =max$ - minS .
SES SES

Determine the average of w(.5) over all non-cmpty subsets S of J,..

Solution: For 1 < k <! < wnlet S(k,!) denote the set of subsets of J,, with
TSk ongs=t
We have, for all S € S(k,0),
w(S)=1-F,

and
o ) Lo if k=1,
I'S(k'l)l - { c_)l—k—l , if k<l s
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Then we have

Z w(S) Z Z w(S)

SFESC A, 1<hSI<n  SCS(kJ)

= > (-R)ISKk,D

1<k<i<n

ST kvt
1<kl

n—1 n- i n

St it L D 3V > R D
k=1 [§ k=1

=k+1 I=k 1

n-—1
= Yok ((n — 2 (k- 1)2*‘“)
k=1

n—1
- i: k2—-k—l(2n+l = 2k+l)
k=1

n—1 7i—1

= (-2t 2 Sk - )
k=1 k=1
n—1 n--1
=2 S k2 R+ Yk
k=1 k=1
1
= (7’-—- 1)2"’ (l - E;_—'l')
g (2— (1;:11)) tn—1
n D2=2n-1)-2" L on+1)+n -1
(n=32"+(n+3).

n
i

i

5o that the required average is

(n —3)2" + (n + 3)

o1 . 17:],2,....

89. Prove that the number of odd binomial cocfficients in each row



SOLUTIONS 157

of Pascal’s triangle is a power of 2.

Solution: The entries in the n-th row of Pascal’s triangle are the cocfficients
of the powers of @ in the expansion of (1 4 x)". We write # in
binary notation

{89.1) R A S IR

where ay, ... 1, arve integers such that

(89.2) Ay > >-->ap2 0.

Now

1422 (mod 2),

1+ 27 (maod 2),
1+2%  (mod 2),

(1+x)? — 1422422
(I +=Y = +2%)2
(428 =(1+29?

and so generally for any nonnegative integer a we have

(+x)* =142 (mod?2).

Thux, we have

(1 4 )2 #2244 2%
(1 + 2 (1 + )22 (1 + 7)2™
(U + )1+ 222) - (1+22%)  (nod 2)
14 (22 227 4 4 22
+ (.r"‘" 12 Ly g2 42%)
+ cee
FI2IHTTRALY (004 9y ,

(14 )"

W

i

and the number of odd coefficients is

|+k+(§)+...+ (:)z._,k.
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90.  Yronm the n X u array

1 2 3 ce.oon
n+1 n+2 n+43 e 2
20 =1 2n 4?2 203 oo 3

(n=Dn+1l (n=Nn+2 (n-Dn+3 ... a2

a number =y is selected. The row and column containing @y are then deleted.
From the resulting array a number ry is selected, and its tow and column
deleted as before. The selection is continued until only one number x,, remains
available for selection. Determine the sum zy +xo | <+ -+ Ty,

Solution: Suppose that ,, 1 <7 < n, belongs to the 74-th row and the
si-th column of the array. Then

Zi—(ri-1mis, 1<isn,

and so

ZT‘—-MZT,—H OZ

=1 i=1

Now {r1,...,7a} and {s1,...,$,} are permutations of {1,2,...,n} and so

Z:l"'l' Z‘ —Z _n(n~l)

Thus . )
= +1 , 1 n(n? L1
IR CESTIIS LT )

91. Suppose that p X’s and ¢ O’s are placed on the circumference of
a circle. The number of occurrences of two adjacent X’s is « and the number
of occurrences of two adjacent O’s is b. Determine « — b in terms of p and ¢.
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Solution: Let
AYII Y A’r"‘ N(‘r’ A’O(’

denote the number of occurrenees of XX, X0, 0X, 00, respectively. Then
clearly we have

Nyy=u,

Now = b,

Nyt Ny = 120

New+ Ny =g,

so that

a—b = Ny —Ne
= (N:r:r - N::o) - (Not, + Nor) -+ (Nu: N N:-u)
= p-q+(Nez— Nro) .

Finally, we show that N, = Ny, which gives the result
a—-bh= rP—q.

To sce that N,, = N, we consider the values of a function § as we make one
clockwise tour of the circumference of the circle, starting and finishing at the
same point. Initially, we let § = 0. Then, as we tour the circle, the valuc of
§ is changed as follows as we pass from each X or O to the aext X or O:

new value of § = old valueof § | ¢,

where
1, in going form O to X ,
(= 0 . in going from X to X or O 0 O ,
=1 , in going from X 10 O .

Clearly, the value of S at the end of the tour is Nop — Ny. However, § must
be 0 at the end as we have returned to the starting point. This completes the
proof of Ng, = N,,, aud the solution.
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92. In the triangular array

1
1 1 1
1 2 3 2 |
(92.0) 1 3 6 7 6 3 1
1 4 10 16 19 16 10 4 1

overy entry (except the top 1) is the sum of the entry o immediately above it
and the entries b and ¢ immediately to the left and right of . Absence of au
eutry indicates zero. Prove that every row after the second row contains an
entry which is even.

Solution: The first eight rows of the triangular array taken modulo 2 are
given in (92.1).

1
111
10101
) 1101011
(92.1) 100010001
11101110111
1010001000101
1101101 11011011

The first four entries in the fourth row of (92.1) are 11 0 1, which are exactly
the same as the first four entries in the cighth row. Thus the pattern

(92.2)

Pt
D e D -
<

1
10

repeats itsell down the left-hand edge of the array. As cach row of (92.2)
contains at least one zero, cvery row from the fourth on down contains an
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even number. This completes the proof, as the third row contains an even
nunuber.

93. A sequence of » real numbers 2, ..., z, satisfics
. z1 =0,
93.0 ; .
( ! { it Jec 4, 2<i<a

whete ¢ is a positive read number. Determine a lower bound for the average
of wy,... 2y as a lunction of ¢ only.
Solution: lLet z,4; be any real number snch that

lzn-HI = |1'1z + CI .

Then, we have

n-kl n-jp1 nﬂ ”
— —
Yort = Yl = Yo leer 4l
=1 i=2 =2

nts

T

= L(:;_1+c)2
=2
w1 nf1

= Zz§_| + 2«:2 zioy + P
i=2 i=2

n "
= 21,‘ + 2 Zz,- + n,
i=1

so that

n
n
0< 13,“ = 2¢ Lz.- -+ An ,

i=1

and thus (as ¢ > 0)
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94. Prove that the polynomial
(91.0) fri=r" 1122 x5

is irreducible over Z for o D 1L

Solution: Suppose f(zj is reducible over Z Phen there exist maonic poly-
nomials ¢(.e) and E(r) with integral coclficicats such that

(91.1) Fooy giethin depy 2t dep )

Thus, we have

5= f(0) .= 4{0)A(0) ,
and, as ¢(0}, #(0) are integers and 3 is prime, we have without loss ot geuerality
g(0) = kL, MO0} =35,

Let

olz) = JJtx - 8)

=1

be the factorization of g(x) over C. Then, we have

1= 19(0) = JT18:
=1
and so at least one of the |3;] is less than or equal to 1, say

& <1, 1<i<r.

Hence

1
‘

If(B3y = 1601 34 3{2 1315

5 - ]~ A - 180 - 50"
B—1-1-1-1

1,

VAR



SOLUTIONS 163

which contradicts

S(B) = g(BR(B) = O R(B) = 0.

This proves that f(r) is irreducible over Z.

95. Let ay,... 0 be n (>4} distinet real numbers. Determine the
general solution of the system of n = 2 lincar equations

T B R R | 2y -0,

Az | agez | o | @ay =0,

(95.0) aey | iy ) oo ) AR, ~0,
a} ey baf ey o 1 @072, =0,

m the n unknowns xy,..., ..

Solution: Set
f(@)=(x- e1)(c — @) (2 - uy).
For k=0,1,...,n — 1 the partial fraction expansion of %/ f(2) is

2 e a)

jG_) = i= € — g

(95.1)

Multiplying both sides of (95.1) by f(z), and cquating ¢ oefficients of <" ~*, we
obtain

] 2 af 0 ,k=0,L,...,0—-2,
(95.2) Zm‘{l k=n-1
This shows that

= (e i)
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and

are two solutions of (95.0). These two solutions are linearly independent, for
otherwise there would exist real nambers < and ¢ (not both zero) such that

s+ te=(0..... 0).
that is
(95.3) $+la; =0, i=12,...,n.

1f ¢ = 0 then from (95.3) we have s = 0. which is a contradiction. Thus, 1 £ 0
and (95.3) gives
& . .,
a=—-=, i=12,...,n,
1
which contradicts the fact that the a; are distinet. Thus the solutions u and

v are lincarly independent.
Next, as the a; are distinct, the Vandermonde deterininant

1 i (I
@ a2 Ay, -2
2 2 2
G az - Tn—2
G a e |

does not vanish, and so the rank of the coefficient matrix of (95.0) is » — 2.
‘Thus all solutions of (95.0) are given as linear combinations of any two linearly
independent solutions. Hence all solutions of (95.0) are given by

(21y--0020) = o4 Be
_ (g+aa._ 9+13a,.)
flar) 777 fan) /7

for real nunmibers « and /4.
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96.

Evaluate the snm

1
S( ."v = —
) Z mn’
1<m<nsN
m4nd>N

€0 D=1

Solution: lor ¥ > 3 we have
S(N) = y 2 4+ ¥ L
mn mn
1<mn<N -1 t<m<n=N
m4n>N n4n>N
GCD(m,n)=1 GCD(mn)=1

1 1
- X

mn
1<m<ngN-1

SR>

1<m<n<N-1

m4rnd>N- 1 m4n=N
GCD(m,n)=1 G D(mn)=1
1
= S(N - - —_—
SN =1 Z m(N —mn)
1<m<Nf2
GCD(n,N)=1
1 1
= SN -1) - - -
S(N =1) v Z -
1<m<N/2
GCD(m N)=1
1 |
N OL @
1<m<N

CCD(m.N)=1

|

+ Z mN
1<m<N
GeDORN)=1

1 1

oy Xy
1<m<N

GO D(m,N)=1

1 1

¥ X Wom
1<m<Nf2

GCD(n,N)=1
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1 — 1 1
= S(N - > —_ - S
SN 1) F D D
1amaN
GED(muN)=1
SN 1),

remmemberiug that GCD(N[2,N) > | for even NV (> 4).

1
X .

1<meN

GCD(m N )1

Thus, we have

S(N) SN -1 S(A ) S(2) - 1/2.
97. Fvaluate the limit
ﬂi " ]
97. L -1 D
(97.0) o ?_4”4:4' TR
Solution: Partition the unit square [0, 1] x [0, 1} into n? snbsquares by the

partition points

{Gfa /) 0< j,k<n}.

Then a Riemaun sum of the function z/(x? t y?) for this partition is

2: ifn | Z
1< rkgn (G057 4 (kfm)? n? LTI

and also

iln 1
,I,"" L (F/m)2 4 (k)2 ut

1< jkSn

50 that (97.0) becomes

1 1 r
— ._d.
/o /u x24 y? da dy

VAR

k* ’

= dz d
//[()ll)([‘.)ll-fl 4yt S
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x4 perc b cse
/ [ cosndrda / / cos6 dr d8
6=0 Jr=0 w/4/r=0
=

/4 x/2
= / an 4 / cot0 df
0n /1

- w14 [In sit\O!:;f
w1V
thatis L -: =mf1 ¢ (In2)/2,

98. Prove that

(98.0) tan —:-‘; L 4'slll ﬁ = V1.

Solution: Tor convenience wa let p = 7/11, and set
C=cosp, s=sinp.
Then, we have ¢ | is = e¥? and so (¢} is)'! = -1, that is

My 11051 — 55e%8% .- 1656857 - 330c7 s% 4 162¢55%1

-mzc“ € 330c1 <71 4 16538 o 55c2¥i - 1les'V — s =

Equating imaginary parts, we obtain
(98.1) 116'% — 165¢%* o 4628 -- 330c%s™ + 5o 2s® — &M
From (98.1), as & ;é 0, we have

(98.2) 11¢'0 — 165¢%5% - 462¢%s - 330c1s® -} 53¢%s% — <10 =
Nex(, as
(98.3) E=1-gt,

the equation (98.2) becomes

(9%.4) 1] — 220s% 4 12325% — 28165° .- 28165% -- 102450 =

and thus

-1,

=0.

0.

0,
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(11s — 445% ~ 325°)% — 11c%(1 - 45%)?
= 1215% — 9685 + 2640s° — 2816s% + 10245'°
111 = #2)(1 = Rs? 4 sY)
= =11 F 22087 — 1232s! | 2816<% - 28165 + 102450
=0,

by (98.4). This proves that

s e = 324 ,
9R.5 LB CON AT
( ) el st Lv

Next, we have

3tanp —tan’p

tan3p -+ 4sin2p = m + 8sinp cosp
3sc? — &°
T 832 +8se,

that is, using (98.3),

(98.6) tan 3p -f 4sin2p = %)3215
Then, from (98.5) and (98.6), we obtain

tan3p +4sin2p = £V11 .
As tan3p > 0, sin2p > 0, we must have

3 27T
1"
1 +4<mll \/—,

as required.

99. Forn=1,2,...let

=1 k ks

wi—=
ERE
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Evaluate the sum

5= L'n(n +1°

n=1

Solution: let & be a positive integer. We have

u (n — [ n n
"Z:l‘n('n 1) - }-‘( 1)

- L = (ex - Ink)
n? k-1

Letting n — oc, and using the fact that
lim (g --Ink)
k=00

exists, and also

Ink
AancL kr1 o =0,

we find that

Ink

Tk¥r
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100. For = > 1 determine the sum of the infinite series

2 1

. 4 + "‘ e
x -+ k (x+1)z24+1)  (z +1)(F 4 1) (a +1) b

Solution: Tor » a positive integer, set

¢ (21 r «? 2"
Sl T EF v E R T e @
so that
Sa(z) z? '
re-1 2 l+:n:”—~l k 2Ty

Thus, as > 1, we have

linr S"—(f) = ————l
n—oo g — | z—1
giving
€ 7‘2

] + (m.;-.-:'.lﬂj‘\cb,.(z):l.



THE SOURCES

Problem

01:

04:

05:

10:

11:

14:

17:

19:

Gauss, see Werke, Vol 2, Géttingen (1876), pp.11-45, showed that

—1 \2
T e w2 = (=] 1(%[) \/7_’)/2 ’
OP bW e ™2 = (=1 — i(’-;—’)z‘/z_))/z.

This result is implicit in the work of Ganss, sce Werke, Vol 2,
Gottingen (1876), p.292.

The 1nore general cquation y? = 73 + ((4b — 1)* — da?), where « has
no prime factors = 3 (mnod 1), is treated in L.J. Mordell, Diophantine
Equations, Academic Press (1969), pp.238-239.

This problem was suggested by Problem 97 of The Green Book. Tt
also appears as Problem E2115 in American Matheinatical Monthly
75 (1968), p.897 with a solution by G.V. McWilliams in American
Mathematical Monthly 76 (1969), p.828.

This problem is due to Professor Charles A. Nicol of the University
of South Carolina.

Another solution to this problem is given in Crux Mathematicorum
14 (1988), pp.19-20.

The more general equation dV2 — 2eVW — dW? = | is treated in
K. Hardy and K.S. Williams, On the solvability of the diophantine
equation dV? — 2eVW — dW? = |, Pacific Journal of Mathematics
124 (1986), pp.115-158.

This generalizes the well-known result that the sequence 1,2,...,10
contains a pair of consecutive quadratic residues modulo a prime
> 11. The required pair can be taken to be one of (1,2),(4,5) or
(9, 10).

Based on Theorem A of G.H. Hardy, Notes on some points in the
integral calculus, Messenger of Mathematics 18 (1919), pp.107-112.



22:

25:

26:

29:

This identity can be found (eqn. (4.9)) on p.47 of {II.W. Gould,
Combinatorial Identities, Morgantown. W. Va. (1972).

‘I'he more general equation ) zy + -+ - + @,z = k is treated in 1lua
Loo Keng, Introduction to Number Theory, Springer- Verlag (1982),
sec Theorem 2.1, p.276.

Finite suras of this type are discussed extensively in Chapter 15 of
W.L. Ferrar, Ihgher Algebra, Oxford University Press (1950).

See Problem 2 on p.113 of W. Sierpiuski, Flementary Thenry of
Numbers, Warsaw (1964).

Suggested by Problem A-3 of the Forty Seventh Annual William
Lowell Putnam Mathematical Competition (December 1986).

The discriminant of f(z*), k > 2, is given in terms of the dis-
criminant of f(z) in R.L. Goodstein, The discriminant of a certain
polynomial, Mathematical Gazette 53 (1969), pp.60-61.

H. Steinhaus, Zadanie 498, Matematyka 10 (1957), No. 2, p.58 (Pol-
ish).

‘This problem: was given as Problem 3 in Part B of the Seventh An-
nual Carleton University Mathematics Competition (1979).

Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1975).

Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1972).

Based on a question in the Scholarship and Entrance Examination
in Mathematics for Colleges of Oxford University (1973).

Based on a question in the Scholarship and Entrance Fxamination
in Mathematics for Colleges of Oxford University (1973).

172



45:

47:

48:

49:

52:

53:
56:

59:

62:

63:

64:

This is a classical result, sce for example H.S.M. Coxeter and S.L.
Greitzer, Geometry Revisited, Mathematical Association of America
(1967), pp.57, 60.

Suggested by T.S. Chu, Angles with rational tangents, American
Mathematical Monthly 57 (1950), pp.407-408.

Suggested by W. Gross, P. Hilton, J. Pedersen, K.Y, Yap, An algo-
rithm for multiplication in modular arithmetic, Mathematics Maga-
zine 59 (1986), pp.167 170.

Based on Satz 3 on p.8 of Th. Skolem, Diophantische Gleichungen,
Chelsea Publishing Co., New York (1950).

Based on Example 1 in D.G. Mead, Integration, American Mathe-
matical Monthly 68 (1961), pp.152-156.

Suggested by 5.4.5 of L.C. Larson, Problem-Solving Through Prob-
lems, Springer-Verlag (1983).

See Problem 48 of Lewis Carroll’s Pillow Problems.

Sec Problem 1 on p.13 of W. Sierpinski, Elementary Theory of Num-
bers, Warsaw (1964).

See Problem 12 on p.368 of W. Sicrpinski, Elementary Theory of
Numbers, Warsaw (1964).

This problem was suggested by Problem A-4 of the Thirty Eighth
Annual William Lowell Putnam Mathematical Competition (Decem-
ber 1977).

This problem was shown to us by Professors David Richman and
Michael Filaseta of the University of South Carolina.

This result is due to 11.J.S. Smith, On the value of a certain arith-
metical determinant, Proceedings of the London Mathematical So-
ciety 7 (1876), pp.208-212.
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68:

69:

70:

95:

98:

This is a well-known problem, see for example 4.4.4 in L..C. Larson,
Problem-Solving Through Problems, Springer-Verlag (1983).

This problem was suggested by Problem 3 of Part A of the Fifteenth
Annual Carleton University Mathematics Competition (1987).

Forms ax? 4 by?+c2? which represent every integer have been charac-
terized by L.E. Dickson, The forms ar?+by?+¢:? which represent all
integers, Bulletin of the American Mathematical Society, 35 (1929),
pp-H5-59.

This problem was suggested by Problem 95 of The Green Book.

Suggested by K.A. Bush, On an application of the mean value theo-
rem, American Mathematical Monthly 62 (1955), pp.557-578.

Suggested by idcas of §7.5, Estimates of characleristic roots, in L.
Mirsky, An Introduction to Linear Algebra, Oxford University Press
(1972).

This is a well-known problem. A generalization to the multinomial
theorem is given by H.D. Ruderman in Problem 1255, Mathematics
Magazine 61 (1988), pp.52-54.

Suggested by an example given in a talk by Professor Michael Fi-
laseta at Carleton University, October 1987.

See Problem 2 on p.219 of W.L. Ferrar, Higher Alyebra, Oxford
University Press (1950).

See Problem 29 on p.123 of E.W. Hobson, A Treatise on Plane and
Advanced Trigonometry, Dover Publications, Inc. New York (1957).
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