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PREFACE 

There is a famous set of fairy tale books, each volume of which is designated by the colour 
of its cover: The Red Book, The Blue Book, The Yellow Book, etc. We are not presenting you 
with The Green Book of fairy stories. but rather a book of mathematical problems. However, 
the conceptual idea of all fairy stories, that of mystery, search, and discovery is also found in 
our Green Book. It got its title simply because in its infancy it was contained and grew between 
two ordinary green file covers. 

The book contains lOO problems for undergraduate students training for mathematics 
competitions, particularly the William Lowell Putnam Mathematical Competition. Along with 
the problems come useful hints, and in the end Oust like in the fairy tales) the solutions to the 
problems. Although the book is written especially for students training for competitions, it 
will also be useful to anyone interested in the posing and solving of challenging mathematical 
problems at the undergraduate level. 

Many of the problems were suggested by ideas originating in articles and problems 
in mathematical journals such as Crux Mathematicorum, Mathematics Magazine, and the 
American Mathematical Monthly, as well as problems from the Putnam competition itself. 
Where possible, acknowledgement to known sources is given at the end of the book. 

We would, of course, be interested in your reaction to The Green Book, and invite 
comments, alternate solutions, and even corrections. We make no claims that our solutions are 
the "best possible" solutions, but we trust you will find them elegant enough, and that The Green 
Book will be a practical tool in the training of young competitors. . 

We wish to thank our publisher, Integer Press; our literary adviser; and our typist, 
David Conibear, for their invaluable assistance in this project. 

Kenneth Hardy and Kenneth S. Williams 
Ottawa, Canada 
May, 1985 
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det A 

NOTATION 

denotes the greatest integer i x, where 
x is a real number. 

denotes the fractional part of the real 
number x, that is, {x}· x - [x]. 

denotes the natural logarithm of x. 

denotes the exponential function of x. 

denotes Euler's totient function defined 
for any natural number n. 

denotes the greatest common divisor of 
the integers a and b. 

denotes the binomial coefficient nl/kl(n-kll, 
where nand k are non-negative integers 
(the symbol having value zero when n < k l. 

denotes a matrix with aij as the (i,j)th 
entry. 

denotes the determinant of a square matrix A. 

(Ix) 





I. 

THE PROBLEMS 

Problems, problems, 
problems all day long. 
Will my problems work out right or wrong? 

The Everly Brothers 

If {b: n = 0,1,2, ... } is a sequence of non-negative real 
n 

numbers, prove that the series 

00 

(1.0) L 
n=O 

b 
n 

converges for every positive real number a. 

2. Let a,b,c,d be positive real numbers, and let 

o ( b d) a(a+b)(a+2b) ... (a+(n-l)b) 
11 a, ,c, = c(c+d)(c+2d) .•. (c+(n-l)d) 

Evaluate the limit L = lim Q (a,b,c,d), 
n+ oo n 

3. Prove the following inequality: 

0.0) tit x 
-3-
x -1 

1 

, x > 0, x ;I: 1. 



2 PROBLEMS (4-12) 

4. Do there exist non-constant polynomials p(z) ln the complex 

variable z such that Ip(z)1 < Rn on Izl = R ,where R> ° and 

p(z) is monic and of degree n? 

5. Let 

such that 

integral 

f(x) be a continuous function on [O,al, 

f(x) + f(a-x) does not vanish on [O,a] . 

f
a f(x) 

f(x) + f(a-x) dx . 
CJ 

6 For E > 0 evaluate the limit • 

lim 
X-l- 00 

l-E 
x 

7. Prove that the equation 

J
X+1 2 

sinCt )dt 
x 

where a > 0, 

Evaluate the 

(7.0) x4 + y4 + z4 _ 2y2Z2 _ 2z2x2 _ 2x2y2 '" 24 

has no solution in integers x,y,Z. 

8. Let 2 a and k be positive numbers such that a > 2k. 

Set xO· a and define xn recursively by 

(8.0) x '" x n n-1 

Prove that 

x 
lim .;. 
n -I- '" yU 

exists and determine its value. 

+_k_ 
x n-1 

, n· 1,2,3, ... 



PROBLEMS (4-12) 3 

9. Let Xo denote a fixed non-negative number, and let a and 

b be positive numbers satisfying 

Define x recursively by 
n 

Ib < a < 21b 

(9.0) 
axn- 1 + b 

x ,. -~;;"""+-a' n - 1,2,3, ... n x
n

_
1 

Prove that lim x exists and determine its value. 
n n.;.oo 

10. Let a,b,c be real numbers satisfying 

2 a > 0, c > 0, b > ac 

Evaluate 
2 2 max (ax + 2bxy + cy ) 

x,y E: R 
x2+y2-1 

11. Evaluate the sum 

(11.0) s .. [n/2] 

L 
r=O 

n(n-l) .•• (n-(2r~1» 

(r! )2 

for n a positive integer. 

12. Prove that for m = 0,1,2, ..• 

(12.0) S (n) ,. 12m+l + 22m+l + 
m 

is a polynomial in n(n+l). 

.•. + n 

n-2r 2 

2m+l 



4 PROBLEMS (13-21) 

13. Let a,b,c be positive integers such that 

GCD(a,b) = GCD(b,c) • GCD(c,a) • 1 . 

Show that t .. 2abc - (bc+ca+ab) is the largest integer such that 

bc x + ca y + ab z • t 

is insolvable in non-negative integers x,y,z. 

14. Determine a function fen) such that the nth term of the 

sequence 

(14.0) 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, ... 

is given by [fen)]. 

15. Let a'1' a2, .... an be given real numbers. which are not all 

zero. Determine the least value of 

2 + x 2 xl +... n 

where xl' ... , xn are real numbers satisfying 

16. Evaluate the infinite series 

S .. 1 
23 33 43 

-rr+rr-3T+ ••• • 

17. F(x) is a differentiable function such that F'(a-x)" F'(x) 

for all x satisfying 0 ~ x ~ a. Evaluate fa F(x)dx and give an 

example of such a function F(x). o 



PROBLEMS (13-21) 

18. (a) Let r,s,t,u be the roots of the quartic equation 

x4 + Ax3 + Bx2 + ex + D = 0 

Prove that if rs = tu 

(b) Let a,b,c,d 

2 2 then AD" C • 

be the roots of the quartic equation 

4 2 y + py + qy + r = 0 . 

5 

Use (a) to determine the cubic equation (in terms of p,q,r) whose 

roots are 

ab - cd ac - bd ad - bc 
a + b - c - d ' a + c - b - d ' a+d-b-c 

19. Let p(x) be a monic polynomial of degree m ~ 1 , and set 

where n is a non-negative integer and D = ~ denotes differentia­dx 
tion with respect to x. 

Prove that f (x) 
n 

Determine the ratio of the 

constant term in f (x) 
n 

is a pOlynomial in x of degree 

coefficient of 
mn-n x in f (x) 

n 

(mn - n). 

to the 

20. Determine the real function of x whose power series is 

21. Determine the value of the integral 

r (. f (21.0) I 
Sln nx dx '" o sin x 

, 
n 

for all positive integral values of n . 



6 PROBLEMS (22·31) 

22. During the year 1985, a convenience store, which was open 

7 days a week, sold at least one book each day, and a total of 600 

books over the entire year. Must there have been a period of consec­

utive days when exactly lZ9 books were sold? 

23. Find a polynomial f(x,y) with rational coefficients such 

that as m and n run through all positive integral values, f(m.n) 

takes on all positive integral values once and once only. 

24. Let m be a positive squarefree integer. Let R,S be 

positive integers. Give a condition involving R.S,m which guaran­

tees that there do not exist rational numbers x,y,z and w such that 

(Z4.0) 

25. Let k and h be integers with 1 ~ k < h. Evaluate the 

limit 

(Z5.0) L = lim hnn (1 
n+ oo r-kn+l 

26. Let f(x) be a continuous function on [O,a] such that 

f(x)f(a-x) = 1 , where a > O. Prove that there exist infinitely 

many such functions f(x) , and evaluate 

(a dx 
JOl + f(x) . 

27. The positive numbers al,aZ,a), •.. satisfy 

f a; = ( f ar)Z , 
rOll ral 

(27.0) n .. 1.Z.3, ... 

Is it true that ar = r for r - 1,Z,3 •... ? 



PROBLEMS (22-31) 7 

28. Let p > 0 be a real number and let n be a non-negative 

integer. Evaluate 

(28.0) [ 
-px n u (p) '" e sin x dx . 

n 0 

29, Evaluate 

n-2 
(29.0) \' r 11 

I.. 2 tan -- , 
r=O 2n- r 

for integers n ~ 2 . 

30, Let n 2: 2 

of k (2 ~ k ~ n) 

be an integer. A selection {s '" a.: i=1,2, ... ,k} 
J. 

elements from the set N = {1,2,3, ... ,n} such that 

< ••• is called a k-selection. For any k-selection s , 

W(S) '" min {ai+1-ai : i = 1,2, ... ,k-l} . 

If a k-selection S is chosen at random from N , what is the prob­

ability that 

W(S) '" r , 

where r is a natural number? 

. 
31. Let k ~ 2 be a fixed integer. For n = 1,2,3,... define 

a - {l , if n is not a multiple of k , 
n - -(k-l) ,if n is a multiple of k 

Evaluate the series 
'" a 
L ...£. 

n n=l 



8 PROBLEMS (32-40) 

32, Prove that 

for m· 0,1,2, .•• • 

33, For a real number u set 

(33.0) I(u) .. r.e.no - 2 2u cos x + u ) dx • 

Prove that 
1 2 I(u) = I(-u) .. II(u ) , 

and hence evaluate I(u) for all values of u. 

34, For each natural number k ~ 2 the set of natural numbers 

is partitioned into a sequence of sets {A (k): n· 1,2,3, ••• } as 
n 

follows: A1(k) consists of the first k natural numbers, A2(k) 

consists of the next k+1 natural numbers, A3(k) consists of the 

next k+2 natural numbers, etc. The sum of the natural numbers in 

A (k) is denoted by s (k). Determine the least value of n· n(k) 
n 3 n 2 

such that s (k) > 3k - 5k , for k" 2,3, ••• 
n 

35. Let {p: n = 1,2,3, ••• } be a sequence of real numbers 
n 

such that Pn ~ 1 for n" 1,2,3, •••. Does the series 

(35.0) L 
[p ]-1 

n 

n=l 

converge? 

36. Let f(x) , g(x) be polynomials with real coefficients of 

degrees n+l ,n respectively, where n ~ a , and with positive 



PROBLEMS (32-40) 9 

leading coefficients A, B respectively. Evaluate 

L = 11m ( )J,x f(t)-f(x)d 
g x e t , 

o 

in terms of A, Band n • 

37. The lengths of two altitudes of a triangle are hand k, 

where h ~ k. Determine upper and lower bounds for the length 

of the third altitude in terms of hand k. 

38, Prove that 

P = P (x) 
n,r n,r 

= (1_xn+l)(1_xn+2) .•. (1_xn+r) 

(1-x)(1-x2) ..• (1-xr ) 

is a polynomial in x of degree 

negative integers. (When r = 0 

nr ,where nand rare non­

the empty product is understood 

for all n ~ 0 .) to be 1 and we have P = 1 n,O 

39, Let A, B, e, D, E be integers such that B ~ 0 and 

2 2 F = AD - BCD + B E ~ 0 

Prove that the number N of pairs of integers (x,y) such that 

(39.0) Ax2 + Bxy + ex + Dy + E = 0 , 

satisfies 

N s 2d( I F I) , 

where, for integers n ~ 1 ,d(n) denotes the number of positive 

divisors of n. 

~. Evaluate 



10 PROBLEMS (41-50) 

41. Let 

m different 

pap (n) denote the sum of all possible products of 
m m 

integers chosen from the set {1,Z, ... ,n}. Find 

formulae for PZ(n) and P3(n) . 

42, For a > b > 0 , evaluate the integral 

(4Z.0) 10
.9' ax bx 

e - e 
bx dx. 

x(e aX+1) (e +1) 

43, For integers n ~ 1 , determine the sum of n terms of the 

series 

(43.0) ~ + 2n(2n-2) 2n(2n-2) (2n-4) 
2n-1 (2n-1)(2n-3) + (2n-1)(2n-3)(2n-S) + .... 

44, Let m be a fixed positive integer and let z1,zZ, ... ,zk 

be k (~1) complex numbers such that 

(44.0) s s s 
z1 + z2 + ... + zk ,. 0 , 

for all s,. m,m+1,m+2, ••• ,m+k.-l. Must zl" 0 for i .. 1,2, ... ,k? 

45, Let A = (a
ij

) be the nXn matrix where n 

x , if i '" j , 
aij = 1 if I i-j I .. 1 , 

o , otherwise, 

where x > Z . Evaluate D .. det A 
n n 

46, Determine a necessary and sufficient condition for the equa­

tions 



PROBLEMS (41-50) 11 

x + y + z .. A 

(46.0) x2 + y2 + z 2 
B .. 

3 3 3 x + y + z .. C , 

to have a solution with at least one of X,y,z equal to zero. 

47. Let S be a set of k distinct integers chosen from 
n 1,2,3, ... ,10 -1, where n is a positive integer. Prove that if 

(47.0) 

it is possible to find 2 disjoint subsets of S whose members 

have the same sum. 

48. Let n be a positive integer. Is it possible for 6n 

distinct straight lines in the Euclidean plane to be situated so as 

to have at least 6n2-3n points where exactly three of these lines 

intersect and at least 6n+1 points where exactly two of these 

lines intersect? 

49. Let S be a set with n (~1) elements. Determine an 

explicit formula for the number A(n) of subsets of S whose card­

inality is a multiple of 3. 

SO. For each integer n ~ 1 , prove that there is a polynomial 

p (x) with integral coefficients such that 
n 

Define the rational number a by 
n 

(50.0) n '" 1,2, ..• 



12 PROBLEMS (51-57) 

Prove that a satisfies the inequality 
n 

lIT - ani < 5~-1' n = 1,2, ... 
4 

51. In last year's boxing contest, each of the 23 boxers from 

the blue team fought exactly one of the 23 boxers from the green 

team, in accordance with the contest regulation that opponents may 

only fight if the absolute difference of their weights is less than 

one kilogram. 

Assuming that this year the members of both teams remain the same 

as last year and that their weights are unchanged, show that the 

contest regulation is satisfied if the lightest member of the blue 

team fights the lightest member of the green team, the next lightest 

member of the blue team fights the next lightest member of the green 

team, and so on. 

52. Let S be the set of all composite positive odd integers 

less than 79 • 

(a) Show that S may be written as the union of three (not 

necessarily disjoint) arithmetic progressions. 

(b) Show that S cannot be written as the union of two arith­

metic progressions. 

53. For b > a , prove that 

by first showing that 

Sln x d IT x--i
b . 

a x 2 
1 

< b ' 

t"~XdX' r[te-="nXdX] du . 



PROBLEMS (51-57) 13 

54. Let a1,a2,···,a44 
be 44 natural numbers such that 

o < a1 
< a

2 < ••• < a44 $ 125 . 

Prove that at least one of the 43 differences d. = aj +1-aj 
occurs 

J 
at least 10 times. 

p 

55. Show that 

such that p = 
for every natural number 
2 2 a + b , where a and 

n there exists a prime 

b are natural numbers 

both greater than n. (You may appeal to the following two theorems: 

(A) If P is a prime of the form 4t+1 then there exist integers 
2 2 a and b such that p = a + b 

(B) If rand s are natural numbers such that GCD(r,s) = 1 , 

there exist infinitely many primes of the form rk+s , where k is a 

natural number.) 

56, Let a1,a
2

, .. ·,an be n (~1) integers such that 

(1) o < a1 < a
2 

< ••• < a 
n ' 

(2) all the differences a - a. (1 $ j 
i J 

(3) a, :: a (mod b) (lsi$ n) , where 
1. 

integers such that 1 S a S b-1 . 

Prove that 

n 
L a r 

r=l 

< i $ n) 

a and 

57, Let A ., (aij ) be the nXn matrix where n 

2 cos t , if i '" j , 
aij 

,. 1 if [i - j[ '" 1 

0 otherwise , 

where -TI < t < TI. Evaluate D ., det A 
n n 

are distinct, 

b are positive 

, 



14 PROBLEMS (58-66) 

58, Let a and b be fixed positive integers. Find the general 

solution of the recurrence relation 

(58.0) xn+1 = xn + a + Jb2 + 4axn , n = 0,1,2, ••. 

where Xo = 0 . 

59. Let a be a fixed real number satisfying 0 < a < n , and set 

(59.0) f
a 1 I - - r cos u d 

r - 1 - 2r cos u + r2 u . 
-a 

Prove that 

all exist and are all distinct. 

60. Let I denote the class of all isosceles triangles. For 

I::, € I , let htl denote the length of each of the two equal altitudes 

of I::, and k~ the length of the third altitude. Prove that there 

does not exist a function f of hI::, such that 

for all I::, € I . 

61. Find the minimum value of the expression 

(61.0) 

, 
( 

2 k-) ( k(l+sin t») x + x2J - 2 (l+cos t)x + x + (3 + 2 cos t + 2 sin t) • 

3 for x > 0 and 0 ~ t s 2n. where k > 2 + /2 is a fixed real 

number. 



PROBLEMS (58-66) 15 

62. Let € > O. Around every point in the xy-plane with integral 

co-ordinates draw a circle of radius €. Prove that every straight 

line through the origin must intersect an infinity of these circles. 

63. Let n be a positive integer. For k" 0,1,2, ... ,2n-2 

define 

(63.0) 

Prove that Ik 2: In_I' k .. 0,1,2, ... ,2n-2 . 

64. Let D be the region in Euclidean n-space consisting of all 

n-tuples (x1'x2' .•. ,xn) satisfying 

... 
Evaluate the multiple integral 

(64.0) JJ ... f 
D 

X 2: 0 
n 

where k1, •.. ,kn+1 are positive integers. 

65. Evaluate the limit 

66. Let p and q be distinct primes. Let S be the sequence 

consisting of the members of the set 

m n 
{p q : m,n" 0,1,2, ... } 

arranged in increasing order. For any pair (a,b) of non-negative 



16 PROBLEMS (67.74) 

integers, give an explicit expression involving a, b, p and q for 
., f ab i th S the pos~t~on 0 p q n e sequence • 

67. Let p denote an odd prime and let Zp denote the finite 

field consisting of the p elements 0.1.2 ••••• p-1. For a an 

element of 

with entries 

(67.0) 

Z ,determine the number N(a) 
p 
from Z ,such that 

p 

of 2x2 matrices 

x
2 

- A. where A· [~ :j . 
68 Let n be a non-negative integer and let f(x) be the • 

unique differentiable function defined for all real x by 

(68.0) ( ) 2n+1 f(x) + f(x) - x = 0 . 

Evaluate the integral 

r f(t) dt • 

for x ~ 0 . 

x • 

69 Let fen) denote the number of zeros in the usual decimal 
I 

representation of the positive integer n, so that for example, 

£(1009) • 2. For a > 0 and N a positive integer. evaluate the 

limit 

where 

SeN) = ~ /(k) 
k=1 
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70. Let n ~ 2 be an integer and let k be an integer with 

2 S k S n. Evaluate 

M = max ( min (ai+1-ai )) , 
S lSisk-l 

where S runs over all selections S .. {al,a2""'~} from 

{l,2, ... ,n} such that a
l 

< a2 < ••• < a
k 

• 

71. Let az2 + bz + c be a polynomial with complex coefficients 

such that a and b are nonzero. Prove that the zeros of this 

polynomial lie in the region 

(71.0) Izl S b + c 
a b 

72. Determine a monic polynomial f(x) with integral coefficients 

such that f(x) = 0 (mod p) is solvable for every prime p but 

f(x) = 0 is not solvable with x an integer. 

73. Let n be a fixed positive integer. Determine 

M" max 
Osxksl 

k-l, 2, ••. , n 

74. Let {xi: i • l,2, ••• ,n} and {Yi: i a l.2 ••.•• n} be two 

sequences of real numbers with 

.. ... 2: X • 
n 

How must Yl""'Yn be rearranged so that the sum 

(74.0) 

is as small as possible? 

n 2 
L (xi - Y i) 

i"1 



18 PROBLEMS (75·84) 

75. Let ? be an odd prime and let Z denote the finite field 
p 

0,1,2, .•. ,p-l. Let g be a given function on Z 
p 

consisting of 

with values in Z Determine all functions f on Z with values 

in Z 
P 

(75.0) 

, which 
P 

satisfy 

for all x in Z 
p 

the functional equation 

f(x) + f(x+l) - g(x) 

76, Evaluate the double integral 

(76.0) I .. ilil 
dxdy 

001-xy 

p 

77, Let a and b be integers and m an integer> 1 . 

Evaluate 

78, Let a1,···,an be n (>1) distinct real numbers. Set 

2 
S .. a

l 
+ .. , 

Prove that 

2 + a , 
n 

M = min (a - a )2 
lSi<jSn i j 

i > n(n-l) (n+l) 
M - 12 

79. Let xl ,···,xn be n real numbers such that 

n n 
L I~I = 1 , 

k=1 
L ~ = 0 . 

k=1 

Prove that 

(79.0) 
n xk L-

k=l k 

1 1 
S - - ~ 2 2n' 
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80 Prove that the sum of two consecutive odd primes is the , 
product of at least three (possibly repeated) prime factors. 

81, Let f(x) be an integrable function on the closed interval 

[TI/2,TIJ and suppose that 

Prove that 

r f(x) sink.xdx 
TI/2 

.. {o , 
1 , 

1 ~ k ~ n-l , 
k .. n • 

on a set of positive measure. 

82. For n" 0,1,2, .... let 

(82.0) 

where 

value. 

Show that lim s exists and determine its 
n 

n .... '" 

83, Let f(x) be a non-negative strictly increasing fUnction on 

the interval [a,b], where a < b. Let A(x) denote the area below 

the curve y" f(x) and above the interval [a,x], where a ~ x ~ b, 

so that A(a)" 0 . 

Let F(x) be a function such that F(a)" 0 and 

(83.0) (x' - x)f(x) < F(x') - F(x) < (x'-x)f(x') 

for all a ~ x < x' ~ b. Prove that A(x)" F(x) for a ~ x ~ b . 

84. Let a and b be two given positive numbers with a < b . 

How should the number r be chosen in the interval [a,b] in order 

to minimize 

(84.0) M(r) .. max 
a~x~b 

r - x 
x 

? 
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85. Let {an: n = 1,2, ••• } be a sequence of positive real 

numbers with lim a .. 0 and satisfying the condition 
n-+ oo n 

For any e: > 0 , 

integer such that aN S 2e:. Prove that L 

the inequality 

let N be a positive 

00 k+1 
= L (-1) ~ satisfies 

k-1 

(85.0) IL - < e: • 

86. Determine all positive continuous functions f(x) defined 

on the interval [O,n] for which 

(86.0) r f(x) cos nx dx .. (-1)n(2n+1), n" 0,1,2,3,4 • 

87. Let P and pI be points on opposite sides of a non­

Circular ellipse E such that the tangents to E through P and 

pI respectively are parallel and such that the tangents and normals 

to E at P and pI determine a rectangle R of maximum area. 

Determine the equation of E with respect to a rectangular coordin­

ate system, with origin at the centre of E and whose y-axis is 

parallel to the longer side of R. 

88. If four distinct points lie in the plane such that any three 

of them can be covered by, a disk of unit radius, prove that all four 

points may be covered by a disk of unit radius. 

89 Evaluate the sum 
I 

s .. 
00 00 

L L 212 
m=l n=l m - n 

JUlI!n 
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90 If n is a positive integer which can be expressed in the • 
form 222 n = a + b + c ,where a,b,c 

that, for each positive integer k, 

are positive integers, prove 

2k 
n can be expressed in the 

form A2 + B2 + C2 ,where A,B,C are positive integers. 

91. Let G be the group generated by a and b subject to the 

relations aba· b3 and b5 = 1. Prove that G is abelian. 

92. Let {a: n - 1,2,3 ••.• } be a sequence of real numbers 
n 00 

satisfying 0 < a < 1 
00 n 

for all nand such that L an diverges 
n"'l 

while L a2 converges. 
n"l n 

such that f" (x) 

Let f(x) be a function defined on [0,1] 
00 

exists and is bounded on [0.1]. If L f(a ) 
n-1 n 

converges, prove 
00 

that L If(an)1 
n-1 

also converges. 

93. Let a,b,c be real numbers such that the roots of the cubic 

equation 

(93.0) 3 2 x + ax + bx + c .. 0 

are all real. Prove that these roots are bounded above by 

(2/a2-3b - a)/3 • 

94. Let Z5· {0,1.2,3,4} denote the finite field with 5 ele­

ments. Let a,b,c,d be elements of Z5 with a ~ O. Prove that 

the number N of distinct solutions in Z5 of the cubic equation 

f(x) • a + bx + cx2 + dx3 • 0 

is given by N = 4 - R ,where R denotes the rank of the matrix 
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A = 

95 Prove that • 

(95.0) S : 

is a rational number. 

abc d 

b c d a 

c dab 

dab c 

1 
L 

m,n=1 (mn) 2 
(m,n):1 

PROBLEMS (95-100) 

96. Prove that there does not exist a rational function f(x) 

with real coefficients such that 

(96.0) f(::1) .. p(x) , 

where p(x) is a non-constant polynomial with real coefficients. 

97. For n a positive integer, set 

Prove that 

n 1 
S(n)" L -

k=O [~) 

Sen) 
n+l n+l 2k .. - L-
2n+l k=l k 

98 Let u(x) be a non-trivial solution of the differential • 
equation 

u!' + pu - 0 , 

defined on the interval I = [1,00) , where p = p(x) is continuous 
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on I. Prove that u has only finitely many zeros in any interval 

[a,bJ, 1 $ a < b . 

(A zero of u(x) is a point z, 1 ~ z < ~ • with u(z) = 0). 

99. Let P
j 

(j = O. 1 ,2 •••.• n-l) be n (:<:2) equally spaced 

points on a circle of unit radius. Evaluate the sum 

2 Sen) = L Ip .Pkl 
O~j <k~n-l J 

where IpQI denotes the distance between the pOints P and Q • 

100. Let M be a 3x3 matrix with entries chosen at random from 

the finite field Z2 - {O,l}. What is the probability that M is 

invertib le? 





mE HINTS 

The little fishes of the sea, 
They sent an answer back to me. 

The little fIShes' answer was 

1. Define 

"We cannot do it, Sir, because -," 

Lewis Carroll 

+ b • n;;: 0, 
n 

and prove an inequality of the type 

~ C(al~2 - al~2] 
n-l n 

n ~ 1 • 

where c lS a constant. 

2, Consider five cases according as 

(a) b > d 

(b) b = d 

(c) b < d 

(d) b = d 

(e) b .. d 

In case (a) show 

by a multiple of 

ting ~(a.b.c,d) 

• 

• 

and 

and 

and 

a > c • 

a < c , 
a " c 

.. + 00 by bounding 

In case (b) show 

~(a,b.c,d) from below 

that L = + 00 by estima-

from below in terms of the harmonic series. 

25 
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1 Cases (c) and (d) are easily treated by considering 
~(a,b,c,d) 

The final case (e) is trivial. 

3. A straightforward approach to this problem is to show that the 

function 

F(x) • - 3inx • x > a • 

suggested by the inequality (3.0), is increasing. 

4. Apply Rouche's theorem to the polynomials f(z). _zn and 

g(z) = p(z). Rouch€'s theorem states that if fez) and g(z) are 

anaLytic within and on a simpLe cLosed contour C and satisfy 

Ig(z)1 < If(z) I on C, where fez) does not vanish, then fez) 

and fez) + g(z) have the same number of zeros inside C. 

5. Apply the change of variable x· a - t to 

6. Integrate 

I . fX+l 2t sin (t2) dt 
x 2t 

by parts and obtain an upper bound for III . 

7. Consider (7.0) modulo 16. 

8. 
Using 

By squaring (8.0), obtain the lower bound ~kn+a2 
this bound in (8.0) obtain an upper bound for x 

n 

for x • 
n 
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9. Assume that the required limit exists, and 

ermine its value L. Again use (9.0)to estimate 

use (9.0) 

Ix - LI n 

27 

to det-

10. Either set X" cos a 
function of a, or express 

A(x2 + y2) _ (Bx + Cy)2 for 

, y" sin a and maximize the resulting 
2 2 ax + 2bxy + cy in the form 

appropriate constants A,B,C. 

11. Consider the coefficient of xn in both sides of the identity 

12. Express (.e.ee + l))k - (.e. - l).e.)k, (k = 1,2,3, ... ) as a 

polynomial·in .e., then sum over .e. .. 1, 2, .•• , n to obtain 

(n(n + 1»)k as a linear combination of 

Complete the argument using induction. 

13. Prove that the equation 

bc x + ca y + ab z = 2abc - (bc + ca + ab) + k 

is solvable in non-negative integers x,y,z for every integer k ~ 1. 

Then show that the equation with k" 0 is insolvable in non-negative 

integers X,y,z. 

th 14. Let u be the n term of the sequence (14.0) and show 

that u = k nfor n" (k-;)k + 1 +.e., .e. .. 0, 1, 2, ,.,' k-1 , 
n 1--

and deduce that k S 2(1 + ISn-7) < k + 1 , 
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15. Use Cauchy I s inequality to prove that 

and choose the x. so that equality holds. 
1 

16. Express (n + 1)3 in the form 

An(n - l)(n - 2) + Bn(n - 1) + Cn + D 

for suitable constants A,B,C,D. 

17. Integrate F'(a-x)· F'(x) twice. 

18. For part (b). find the quartic equation whose roots are 

a - z, b - z, c - z, d -Z, and use part (a) to ensure that the 

product of two of these roots is equal to the product of the other 

two. 

19. Differentiate f (x) to obtain the difference-differential 
n 

equation 

fn+l (x) • f'ex) - p'(x)f (x) • 
n n 

20. Consider sinh x + sinh wx + sinh w2x, where w.~ (-1 + 1-3) • 

21. Show that 

I - I • f1T sin(2~ - 1) x dx 
n rl 0 smx ' 

n j: 2 , 

and then use a similar idea to evaluate the integral on the right side. 
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22. Let a. (i = I, 2 ••••• 365) denote the number of books sold 
1 

during the period from the first day to the ith day inclusive. 

Apply Dirichlet's box principle to 

23. Show that a polynomial of the required type is 

f(x.y) • (x + y - 1)2(x + y - 2) + x • 

by showing that f(x,y)· k ,where k is a positive integer. has a 

unique solution in positive integers x and y which may be expressed 

in terms of the integers rand m defined by 

(r - 1)(r - 2) < k ' r(r - 1) (r - l)(r - 2) 
2 oil 2 ,m-k- 2 

24. Consider the complex conjugate of (24.0). 

25. Consider 

hn ( r) .en II 1--
r-kn+1 n

2 

and use the expansion 

- tn (1 - x) • I xl < 1 • 

26. For the evaluation, set x - a - y in the integral. 

27. Use mathematical induction to prove that a • r for all r 

positive integers r. 
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28. Use integration by parts to establish the recurrence relation 

u .. 
n 

u 
n-2 • 

n ~ 2 • 

29. The series may be summed by using the identity 

tan A • cot A - 2 cot 2A • 

30. Prove that the number of k-selections S from N such that 

W(S) ~ r • r • 1.2.3 ..... lS 

31. For each n ~ 1 

n = kq + r ,0 ~ r < n n n 
the series in terms of 

ing to the result 

define integers q and r uniquely by 
n n 

k. Express the nth partial sum s of 
n 

nand q ,and determine lim s by appeal-
n n-+ co n 

lim (1 + ..!. + 
2 ... 1 + - - £.11. m) m 

.. c , 
m-ioCO 

where c denotes Euler's constant. 

32. Recognize the given 
. (00 m (i-1)x 
lntegral hX e dx • 

integral as the imaginary part of the 

Evaluate the latter integral using inte-

gration by parts. 

33. For the evaluation, iterate 

I(u) 

1 2 I(u) = II(u ) 

(n = 1,2, 3, ... ) 

and then let n -+ + co in the case 0 < u < 1 . 

to obtain 
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34. Determine an exact expression for Sn(k) and then compare 

the values of Sk_l(k) and sk(k) with 3k3 
- 5k2 . 

35. 

36, 

)1, 

co p-1 
Show that (35.0) converges by comparison with I ~n~_ 

n=l Pl" ·Pn 

Apply l'H6pital's rule. 

Relate h,k,t to the lengths of the sides of the triangle, 

and thea use the triangle inequality. 

38. Obtain the recurrence relation 

and apply the principle of mathematical 

p .. p 
n+l, r n+1, r-l 

induction. 

39. Show that Bx + D is a divisor of F. 

40. The first few terms of the series are 

1 ~ (1 - ~) "3 = , 

2 !(1 _ !} -= , 
21 237 

1... 1[! -1-J 91 2 7 13 

41. Use the identity 

... 

42. For a suitable constant C, set 
eX 

f (x) .. -"'--- + C , and 
eX + 1 

show that for t > 0 
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r: (ax _ bx) 
. .,e e d 
I X 

J
' ax bx) Oz(e +l)(e +1 

_ j\(ax) dx _ rf(bX) dx . 
o x Jo x 

43. Let S n 
denote the sum of n terms of (43.0). Calculate 

the first fe~ values of Sn' conjecture the value of S in general, 
n 

and prove it by mathematical induction. 

44. Cons~der the polynomial whose roots are zl'z2 •••. ,zk' and 

use (44.0) co show that its constant term is zero. 

45. Obtain a recurrence relation for D by expanding D by n n 
its first ro· ... 

46. Expr~ss xyz in terms of A, Band C . 

47. Consider the sums of the integers in subsets of S and apply 

Dirichlet's box principle. 

48. Count pairs of lines in the proposed configuration. 

49. 

so. 

Show that A(n) - I (n) and evaluate this sum by considering 
k-O {k 

k=O (mod 3) 
2 n (l+w) ,where w is a complex cube root of unity. 

To prove the required inequality, replace p (x) 
n 

by 

x4n (1_x)4n _ (_1)n4n 
1 + x2 in (50.0), and then use the inequalities 

1 

1~2 ~ 1 and x(l-x) < 1 . 1 x4n (1_x)4n 
- 4 to estlmate 0 1 +X2 dx. 
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51, Let B
1

,B2, ..• ,B
23 

(resp. G1,G2, ... ,G 23 ) be the members of 

the blue Crespo green) team, ordered with respect to increasing weight. 

For each r (1 ~ r ~ 23) consider last year's opponents of 

Br+1, .•• ,B23 or Gr+1, ... ,G 23 according as Br is heavier or 

lighter than G • 
r 

52. Each member of S can be written in the form (2r+l) (2r+2s+l) , 

for suitable integers r ~ 1 and s ~ O. Use this fact to construct 

the three arithmetic progressions. 

53. For y > 0 prove that 

i
b 

) 
-ux o e sin x dx du i

b . 
'" (i-e -xy) SlO x dx 

o x 

and then show that 

54. 

lim 
y .... oo 

(i-e -xy ) nn x dx i
b . 

o x 

43 
CIDnsider ~ d. 

j=l J 

J
b . 

,. Sln x dx . 
o x 

55. For any natural number n, construct a prime p of the form 

n 
p = 4k IT (r2+q)2 - q , 

r'" 1 

where k is a natural number and q > n 

,0< a < b 

is a prime of the form 

Then, assuming a ~ n , 2 2 
4t + 3 , so that p = a + b 

obtain a contradiction by considering the 2 2 factor a +q of b • 

56. For 2 ~ r ~ n obtain a lower found for a -a 
r 1 in terms of 

< i ;;; r . b and r by considering the differences a.-a. 
1 J 

, 1 ~ j 
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57. E~aluate D1,D2,D3 
and conjecture the value of D 

n 
n Prove your conjecture by using the recurrence relation 

be obtained by expanding D by its first row. 
n 

58. Prove that 

x • x + a - 162 + 4axn+l n n+l 

and use this to obtain the recurrence relation 

x +1 - 2x + x 1 = 2a . n n n-

59, For r > 0 and r ~ 1 show that 

I 
r 

.. a 
f.

a 
+ ! 1_r2) du 

2 ( 1 - 2rcos u + r2 ' -a 

for all 

which may 

and evaluate the integral using the transformation t. tan u/2 • 

50. Construct a class of isosceles triangles whose members have 

two equal altitudes of fixed length h. while their third altitudes 

are arbitrarily long. 

61. Recognize the expression in (61.0) as the square of the dist­

ance between a point on a certain circle and a point on another plane 

curve. 

62. When the line L through the origin has irrational slope, 

use Hurwitz's theorem to obtain an infinity of lattice points whose 

distances from L are suitably small. 

In 1881 Hurwitz proved the foZlowing 'basio result: If b is 

an irrational number then there exist infinitely many pairs of integers 
(m,n) with n # 0 and GCD(m~n) - 1 suoh that 
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b 
m 
n 

35 

1 
< -- • 

ISn2 

This inequality is best possible in the sense that the result 

becomes false if IS is replaced by any larger constant. 

63. Show that Ik ~ 12n- k- 2 and use the arithmetic-geometric 

mean inequality. 

64. Express the multiple integral (64.0) as a repeated integral 

and use the value of f;xr(a-x)sdx, where rand s are positive 

integers and a is a positive real number, successively in the re­

peated integral. 

65. Show that for a suitable integer fen) 

~ ([un] [IIi]} f~n)[[ 4n ] [ 4n ]} k~l IK - 2 IK ~ s~l (2s+l)2 - (2s+2)2 • 

and thus compute L in terms of well-known series. 

66. a b 
p q 

th is the n term of 

number of pairs of integers (r,s) 

s ~ 0 . 

the sequence S, where 
r s a b such that p q ~ p q 

n is the 

, r ~ 0 , 

67. A straightforward approach is to determine explicitly all 

matrices X such that X2 = A. The form of X depends on whether 

or not a is a square in Z 
p 

68. Recall that if y = g(x) is differentiable with positive 

derivative for x ~ 0 and g(O)· 0 , then 

I
x Ig(X) 1 
og(t) dt + 0 g- (t) dt = x g(x) , x >_ 0 . 
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69 Evaluate S(10m-1) exactly and use it to estimate SeN) • • 

70. Show that K· - • [
n-1] 
k-l 

71. Express the roots of 2 az + bz + c in terms of a. band c 

and estimate the moduli of these roots, 

72. Choose integers a. band c such that x2 + a = 0 (mod p) 

is solvable for primes p = 1 (mod 4) and p. 2 ; x2 + b = 0 (mod p) 

is solvable for p = 3 (mod 8) ; x2 + c = 0 (mod p) is solvable for 

p = 7 (mod 8) ; and set 

222 f(x) • (x +a)(x +b) (x +c) 

73. Assume without loss of generality that 0~x1~x2~ ••• ~xn~1 

and show that 

n 
S· l Ix. - x·l· L xk(2k-n-l) 

l~i<j~n 1 J k-1 

Consider those terms 
2 that K· (n /4] • 

1 in the sum for which k ~ 2(n+1) and deduce 

74. Show that the smallest sum (74.0) is obtained when the y. 
1 

are arranged in decreasing order. 

75. Replace x by x+k (k. 0.1.2 ••••• p-l) in (75.0) and form 

the alternating sum 

p-l 
L (_l)kg(X+k) 

k-O 
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76. Express the improper double integral I as a limit of proper 

double integrals over appropriate subregions of the unit square and 

use standard methods to show that I. n2/6 . 

77. Use the identity 

k-l[ ] ~ ~ + e • [ekJ • 
x=O 

where k is any positive integer and e is any real number. 

78. Reorder the a's in ascending order and define 

for a fixed subscript j 

Set b i '" aj + lM(i - j) (i· l,2, ••• ,n) and prove 
n 2 

Deduce the required inequality from S ~ L b
i 

. 
i .. l 

79, Establish and use the inequality 

80, Denote the 
k R. 

Pn + Pn+l • 2 P • 

1 
n 

th . b n prlme y Pn 

for some odd prime 

1 ::; k ::; n • 

, and show that if 

p , then k + R. ~ 3 

81, Estimate the integral 

fn I f(x) I 
n/2 

n 
~ sin kx dx k-l 

from above under the assumption that If(x)1 < n~2 on [~.nJ 
except for a set of measure O. Use (81.0) to obtain a lower bound 

and derive a contradiction. 



38 

82. Show that 

HINTS (82.96) 

S lS non-decreasing and bounded above. 
n 

83. Assume that A(x) and F(x) differ at some point c in (a,b] 

and obtain a contradiction by partitioning [a,c] and using (83.0) on 

each subinterval. 

84. A direct approach recognizes M(r) as max(: - 1,1 - ~) and 

then minimizes M(r) with an appropriate choice of r. 

n 
85. Let S '" ~ (-l)k+l ak and show that !Sn-L! < !Sn_l-L! and 

n k"'l 

an '" I Sn-L I + ISn_l-L! . 

86. Express (cos 2x + cos x + 1)2 as a linear combination of 

cos nx (n '" 0,1,2,3,4) and consider 

fo1Tf(X) Ccos 2x + cos x + 1)2 dx . 

87. Begin by determining R when the ellipse is in standard 

position and then rotate the axes through an appropriate angle. 

88. Recall Hetty's theorem: Given n(~4) aonvez regions in the 

p~e suah that any three have non-empty interseation. then att n 

regions have non-empty interseation. 

89. Use partial fractions and the result 

lim(~l-.eytN) =c. 
N + 00 k"'l k 
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where c is Euler's constant, to evaluate 

90. Use the identity 

11m 
N"''''' 

N 1 
'i' 2 2 
L. m-n 

na 1 

39 

91. Prove that a and b commute by using the 
4 4 

relation aba = b3 

in the -1 2 -1 form b ab = b a to deduce ab = b a . 

92. Start by applying the extended mean value theorem to f on 

[O,a J. 
n 

93. Let p be the largest root 
3 2 

of (93.0). Consider the discrim-

inant of (x +ax +bx+c)/(x-p) . 

94. Let B be the Vandermonde matrix given by B = 

and consider the rank of BA. 

1 1 12 13 

1 2 22 23 

1 3 32 33 

1 4 42 43 

95. Collect together terms having the same value for GCD(r,s) 

"" 

, 

96. Suppose that such a rational function f(x) exists and use 

the decomposition of its numerator and denominator into linear factors 

to obtain a contradiction. 
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97. Sum the identity 

2 1 
(n+l)! ~-~ n n-

(n+l) k n k 
= kl(n-k)! - (k+l)!(n-k-l)! , 

for k = 0,1,2, •••• n-l 

98. Assume that the set of zeros of u(x) on [a,b], 1 S a < b , 

is infinite. Deduce the existence of an accumulation point c in 

[a,b] with u(c)" u'(c) .. 0 , and then show that u(x) = 0 on [a,b]. 

99. Take P
j 

(j = 0,1,2, ••• ,n-l) to be the point exp(2nji/n) 

on the unit circle I z! .. 1 in the complex plane, and express 

!P
j
P
k

!2 in terms of exp(2~(k-j)i/n) 

100. Let M" (aij ) (1 S i,j S 3) and with the usual notation 

let det M .. al1A11 + a12A12 + a13A13 Begin by counting the number 

of triples (all,a12,a13) for which det M .. ° , distinguishing two 

cases according as (Al1,A12,A13) a (0,0,0) or not. 



1. 

THE SOLUTIONS 

It seemed that the next minute 
they would discover a solution. 

Yet it was clear to both of them 
that the end was still far, far off, 

and that the hardest and most complicated 
part was only just beginning. 

If {b: n - 0, 1 ,2, .. , } 
n 

Anton Chekhov 

is a sequence of non-negative real 

numbers, prove that the series 

(1.0) 

b 
n 

converges for every positive real number a, 

Solution: For 'a > 0 we set 

so that 

+ b 
n 

n ;: 0 , 

a - a • b 
n n-l n' 

n ;: 1 , 

As b ;: 0 we have, for n;: 1 • 
n 

ao ;: a > 0 and 

41 

a I: a 1 > 0 • n n-
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Now, for n ~ 1 , we may deduce that 

b 
n 

= 

= 

= 

= 

a - a n n-1 

a 
3/2 
n 

1 
1('2 -
a 
n 

a~ } 

a n-1 
1('2 
a 
n [JI2 + J/2] [J/2 - }12] 

n-1 n n-l n 

1/2 
a n-1 
1('2 
a 
n 

[ 
1/2] [ a n-1 1 

1 + a1/2 a1/ 2 
n n-l 

- }12] 
n 

Hence, for m ~ 1 , we have 

As the partial sums 

(1.0) converges for 

s of (1.0) 
m 

every a > O. 

bO 
m 

~ L [.i7' - J12] -rrr + 2 
aO n=l n-l n 

.. 312 + 2 1('2 bO [I 
aO aO - .ll'] 

< 
bO 2 

312 + 1('2 
aO aO 

~ 

bO 2 
-:rT2 + 1('2 . 
a a 

are bounded, the infinite series 



SOLUTIONS (1-2) 

2, Let a,b,c,d be positive real numbers, and let 

Q (a bed) - a(a+b)(a+2b) ..• (a+(n-l)b) 
n ,., - cCc+d) (c+2d) ... (c+(n-l)d) 

Evaluate the limit L = lim ~(a,b.c,d). 
n+<Xl 

Solution: Considering the five cases specified in THE HINTS, 

that 

r- in cases (a), (b) , 
L = 0 : in cases (c),(d) 

1 , in case (e) 

We set k=[~]+l , so that c < kd 

(a) When b > d ,as c + jd < (j + k)d • we have for n ~ k 

n-l 
( ) .., a(n~l) ! b 

Qn a,b,c,d .. k(k+O ... (k+(n-l) dn 

a(k-l)! bn- 1 
= ---==...;:.:.....:....::~---

(k+n-l) (k+n-2) •.• n dn 

~a(k-l)! ,(bd)n-l, 
(k+n-O

k 
d 
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we show 

which tends to infinity as n tends to infini ty, showing that L = + <Xl. 

(b) When b = d and a > c we have 

n-l 
(a + ~b) Q (a,b,c,d) = II n . 

~ .. O c + ~b 

n-l 
= II (l+a-c) 

~=O 
c + ~b 

n-l n-l 1 
> II ( a - c} a - c 

L 
9,,,,0 

1 + b(Hk) > b 9.=0 9, + k 
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which tends to infinity as n tends to infinity since the harmonic 

series diverges, showing that L· + <» • 

(c) (d) By considering the reciprocal of 

the above results L" 0 • if b < d , or 

Q (a,b,c,d), we 
n 

if b = d and 

obtain from 

a < c • 

(e) Clearly ~(a,b,c,d) .. 1 in this case, so that L = 1. 

3. Prove the following inequality: 

(3.0) lit x 
""'3 

< 1:. (x+l) 
3 (x3+x) 

x > 0, x ;I! 1. 
x -1 

Solution: For x > 0 we define 

3 
F(x) .. (x -1)(x;+I) - 3btx 

(x3+x) 
, 

so that 

4 3 
F(x) = x +x -x-l - 3 bt x. 

(x3+x) 

Differentiating F(x) with respect to x • we obtain 

that is 

(3.1) 

F' (x) • 
32343 2 (4x +3x -l)(x +x) - (x +x -x-I) (3x H) 

(x3+x)2 

x6-3x5+3x4_2x3+3x2_3x+l 
F' (:JC) -

(x3+x) 2 

3 - -
x • 

The polynomial 

property that 

p(x) in the numerator on the right in (3.1) has the 
6 1 -3 p(x) .. x p(-) , and so x p(x) can be written as a x 

cubic polynomial in x + l/x 
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We have 

F'(x) ~ 3
X3 2(x+~)3 - 3(x~)2 + 4}. 

(x +x) 

As X3 -3X+4 • (X.:b1) (X-2) 2 we obtain 

Ff (x) • 

= 
(X4)2 + t)(x-l) 2 

x2(x2+l)2 

45 

so that F'(X) > 0 for x > 0 ,while F'(l) = O. Thus F(x) is a 

strictly increasing function of x for all x > O. Hence in partic­

ular we have 

F(x) > F(l) , for x > I , 

and so 

(3.2) .en x <!. (x+l) 

x3-1 3 (x3+x) 
, 

1 Replacing x by in (3.2). we obtain 
x 

(3.3) bl x <!. (x+O 
x3-1 . 3 (x3+x) 

for x > 1 • 

for 0 < x < 1 • 

Inequalities (3.2) and (3.3) give the required inequality. 

4. Do there etist non-constant polynomials p(z) ln the complex 

variable z such that Ip(z)1 < an on Izl. R ,where a> 0 and 

p(z) is monic and of degree n? 

Solution: We show that no such polynomial p(z) exists, for suppose 

there exists a non-constant polynomial 

such that Ip(z)! < Rn on Iz\ a R . 
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Then we have 

I n n-l z + (an_lz + ... + a1 z + a
O

) I < l-znl on I z I '" R , 

and so, by Rouche's theorem, 

zn + (a lZ n-1 ... + a1z + aO) - z 
n and n 

+ -z n-

have the same number of zeros counted with respect to multiplicity 

I I n-l inside z = R , that is, an_1z + ... + alz + aO has n zeros, 

which is clearly a contradiction. Hence no such polynomial p(z) 

exists. 

5, Let f(x) be a continuous function on [O,a] ,where a > a 
such that f(x) + f(a-x) does not vanish on [O,a] . Evaluate the 

integral 

f
a 

f (x) d 
o f(x) + f(a-x) x. 

Solution: Set 

I - fa f (x) dx - a f(x) + f(a-x) , 
'" (a f(a-x) d 

J ~ f(x) + f(a-x) x. 

Clearly we have 

I + J " 1a 
1 dx '" a 

On the other hand, changing the variable from x to a-x in I, we 

obtain 

I " J 

Hence we have 
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6. For ~ > 0 evaluate the limit 

lim j
X+l 

l-~ 2 
It sin (t ) dt 

x 

Solution: Integrating by parts we obtain 

= 
2 -cos(t ) 

2t 

2 
- l [cos(t ) dt 

2 t2 

so that for x > 0 

47 

rx+l 2 
1x sin(t ) dt = -cos(x+l) + cos x _ l cos(t) dt 2 2 tX+l 2 

2 (x+l) 2x 2 t2 

giving 

rx+l 2 1x sin(t ) dt 

so that 

l-~ rx+l 2 
x 1x sin(t ) dt 

Since .l. + 0 ,as x + + 00 , we deduce that 
~ 

x 

lim 
x+ oo 

l-~ (x+l 2 
x 1x sin(t ) 

7. Prove that the equation 

(7.0) 4 + 4 4 222 x y + Z - y Z 

has no solutions in integers x,y,z . 

dt • 0 • 
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Solution: Suppose that. (7.0) is solvable in integers x, y and z . 

Clearly x4+y4+z4 must be even. However x,y,z cannot 

all be even, as 24 is not divisible by 16 Hence exactly one of 

x,y,z is even~ and, without loss of generality, we may suppose that 

x _ 0 (mod 2) y = z _ 1 (mod 2) . 

Thus we have 

x4 = 0 (mod 16) , y4 = z4 = 1 (mod 16) , 

-2lz2 = -2 (mod 16) , _2z 2x2 :::: -2x2l :::: -2x2 (mod 16), 

and so (7.0) gives 

-4x2 _ 8 (mod 16) , 

that is 

x 
2 _ 2 (mod 4) , 

which is impossible. 

Second solution: We begin by expressing the left side of (7.0) as 

the product of four linear factors. It is easy to 

check that 

A2 + B2 + C2 - 2BC - 2CA - 2AB = (A+B-C)2 - 4AB 

= (A+B-C) - 21AB) (A+B-C) + 21AB) 

Replacing A,B,C by 222 x ,y ,z respectively, we obtain 

444222222 
x + y + z - 2y z - 2z x - 2x y 

_ (x2 + y2 _ z2 _ 2xy)(x2 + y2 _ z2 + 2xy) 

= «x_y)2 _ z2)«x+y)2 _ z2) 

= (x - y - z)(x - y + z)(x + y - z)(x + y + z) 

so that (7.0) becomes 

(x - y - z)(x - y + z)(x + y - z)(x + y + z) = 24 . 
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In view of the form of the left side of (7.0), we may assume 

without loss of generality that any solution (x,y,z) satisfies 

x ~ y ~ z ~ 1 , so that 

x - y - z ~ x - y + z ~ x + y - z ~ x + y + z • 

Moreover x - y - z and x - y + z cannot both be 1 . 

we have 

(x-y-z, x-y+z, x+y-z, x+y+z) 

3 As 24 .. 2 '3, 

.. (1,2,2,6),(1,2,3,4) or (2,2,2,3). 

However none of the resulting linear systems is solvable in positive 

integers x,y,z. 

8. Let a and k be positive numbers such that 2 
a > 2k. 

Set x .. a and define x recursively by o n 

(8.0) k 
xn .. xn_1 + x

n
_

1
' n" 1,2,3, ... 

Prove that 

lim 
n+ OO 

exists and determine its value. 

Solution: We will show that 

lim 
x 
n - " /if 

x n 
v'ff 

12k . 

Clearly x > 0 for all n ~ O. 
n 

Since x .. x + ~ for n n-1 x
n
_

1 n = 1, 2, • .. , we have 

(8.1) 
2 2 

x .. x + 
n n-1 

2 
2k +..L 2 

x n-1 
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and so 

Z Z 2 Z xn > x
n
_
1
+2k > x

n
_

2
+4k > xn_3+6k > ••• > 

2 
xO+2kn 

that is 

(8. Z) x ~/2kn+a2. n=0.1.2, ... 
n 

On the other hand, we have. using (8.1) and (8.Z), 

2 
= a +2kn , 

k2 
+ 2k + 2 • n .. 1,Z .... 

and thus 

giving 

2k(n-1)+a 

2 2 Z n-1 1 
xn ~ Xo + 2kn + k i~O Zki + a2 

~ aZ + Zkn + k2 f.
n
-

1 
dx 

-1 2kx + a 2 

.. 2kn + a
Z 

+ ~ tn(2k(n:;~2~ a
2
) 

(8.3) xn ~"Zkn + a2 + ~ tn(2kn :2~;~-2k)) , n = 0.1.2 •... 

Hence, from (8.2) and (8.3), we obtain 

and thus 

lim 
n+ oo 

/2kn + a2 

Tn Since 

tn(Zkn + (a2-2k ) 
k a2 -2k 

1 + 2 2kn + a2 

x 
n 

lim /Zkn + a2 = 1 • 
n+ oo 

x 
= /Zk • we obtain lim v* = /Zk 

'n +00 
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9, Let Xo denote a fixed non-negative number, and let a and 

b be positive numbers satisfying 

!h < a < 21b 

Define x recursively by 
n 

(9.0) 
ax 1 + b n-

x '" -"--''---7-
n x + a • n-l 

n • 1,2,3 •... 

Prove that lim x exists and determine its value. 
n+ oo n 

Solution: As Xo ~ 0 , a > 0 , b > 0 , the recurrence relation shows 

that x > 0 for n = 1,2, ... 
n 

If lim x exists. say 
n 

equal to L, then from (9.0) we obtain n+ oo 

so that L2 = b , L = + !h . 
Next we have 

aL + b L .. .:;;;:...,;.-...:. 
L + a ' 

+ b 
I x -!hI .. n 

ax 1 n-
x n-l + a - !h 

so that 

Ix -n 

'" 

'" 

(a - Ib) (x 1 - !h) n-
x 1 + a n-

(a - Ib)lxn_
1 

- !hI 
x 1 + a n-

::; (a - v'b)lx - v'bl 
a n-1 

IXn_1 - v'bl 
::; --":""::';2;---

Letting n tend to infinity, we obtain 

1 im x '" v'b . 
n 

n+ oo 
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10. Let a,b,c be real numbers satisfying 

Z a > 0, c > 0, b > ac 

Evaluate 2 2 max (ax + 2bxy + cy ) • 
x, y e R 

x l +yZ .. 1 

Solution: All pairs (x,y) e RxR satisfying xZ + y2 ,. 1 are given 

by x· cos e , y • sin e , 0 ~ e ~ 2~. Hence we have 

Z Z max (ax + Zbxy + cy ) 
(x,y) eRa 
x2+yhl 

where 

.. max F(e) , 
o~e~Z~ 

F(e) ,. a cosZe + Zb cos e sin 9 + c sinZe 

where 

-';'(1 + cos Z9) + b sin 29 +]-(1 - cos 29 ) 

,. ~ (a+c) + b sin Z9 + t(a-C> cos ze 

.. ~(a+c) + ¥(a-c)il+4b i sin (29 + a) , 

a - c 
tan Cl· 2b 

Clearly max F(9) is attained when sin (29 + Cl) .. 1 , and the 
OS9~2~ 

required maximum is 

Se~ond solution: We seek real numbers A,B,C such that 

(10.1) 

Equating coefficients we obtain 

(10.2) 

(10.3) 

(10.4) 

= a • 

-2BC '" 2b , 
2 A - C .. c 
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Subtracting (10.2) from (10.4) we obtain 

(lO.S) 

Then,from (10.3) and (lO.S), we have 

so that 

00.6) 

(B2 + C2)2 • (B2 _ C2)2 + (2BC)2 

.. (c - a)2 + 4b 2 , 
, 

53 

Adding and subtracting (10.5) and (10.6), and taking square roots, we 

get 

B .. 
k(a-c)2 + 4

2
b2 - (a-c) 

(10.7) y- l(a-c}2 + 4bz + (a-c) 
, C.. 2 

Then, from (10.2) and (10.7), we have 

Finally, from 

on the circle 

points 

2 2 (10.1), we see that the largest value of ax +2bxy+cy 

x2 +y2;;'1 occurs when Bx + Cy .. 0 , that is, at the 

(x,y) 

and we have 

2 2 1 ( ) max (ax +2bxy+cy ) • A • 2 l(a-c)2+4b2 + (a+c) 
X2+y2 "I 

• 
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11. Evaluate the sum 

(11. 0) 
[n~2]n(n-l) ... (n-(2r-l» 2n-2r 

SoiL 2 
r=O (r!) 

for n a positive integer. 

Solution: We have 

S = 
[n/2] 

L 
rea 

n! n-2r 
(r!)2(n-2r)! 2 

= [nl 2] [ n ) [ n-r ) rIo n-r n-2r 
n-2r 

2 

n 
= L 

s·O 
2s-t=n 

2s-n 
2 

which is the coefficient of xn in 

Now 

F(x) .. I I [~) [~) 2t x2n-2s+t 
saO taO 

F(x) = 

.. «1 + 2x) + x2)n 

= (1 + x)2n . 

. . n. ( ) 2n. (2n) (2n!) As the coefflclent of x In l+x lS n ,we have S .. (n!) 2 
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12. Prove that for m· O,l,Z, ... 

(lZ.0) S (n) ,. 1Zm+1 + ZZm+l + .•• + nZm+1 
m 

is a polynomial in n(n+1) 

Solution: We prove that 

2(~)So(n) .. 

z(i)Sl (n) .. 

z(~)sl(n) + 2(~JS2(n) .. 

2[i)s2(n) + 2(~)s3(n) -

and generally for k - 1,2,3, ... 

n(n+l) , 

(n(n+l))2 , 

(n(n+l) )3 

(n(n+1»)4 , 

02.1) 
k .. (n(n+1» • 

55 

An easy induction argument then shows that 

a polynomial in n(n+l). 

S (n) 
m 

(m • O.l.Z ••.• ) is 

We now prove (12.1). We have 

2 ~ (~) Sr+k-1 (n) 
r-O 

r+k odd 2 

.. Z r (;) 
reO 

r+k odd 

~ 2 t I (k)tr+k 
t-l r-O r 

r+k odd 
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as required. 

= 

= 

= 
n 
L ((e(l+l»k - (l-l)t)k) 

.e.=l 

= (n(n+l»k 

SOLUTIONS (13) . 

13. Let a,b,c be positive integers such that 

GCD(a,b) = GCD(b,c) = GCD(c,a) = I . 

Show that l = 2abc - (bc+ca+ab) is the largest integer such that 

bc x + ca y + ab z = .e. 

lS insolvable in non-negative integers x,y,z • 

Solution: We begin by proving the following simple fact which will 

be needed below: 

Let A,B,C, be reaZ numbers suoh that 

A + B + C < -2 

Then there eroist integers t,u,v satisfying 

t - u > A , 
u-v>B, 

v - t > C . 
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To see this. choose 

t = [ AJ + 1 • 

u .. o • 

V" -[BJ - 1 • 
so that t,u,v are integers with 

t - u .. [AJ + 1 > A • 

u - v ,. [Bl + 1 > B • 

v - t .. -[Al - [B) - Z ~ -A - B - Z > C . 

The required result will follow from the two results below: 

(a) If k is an integer ~ 1 , then 

bex + cay + abz '" 2abe - (be + ea + ab) + k 

is always solvable in non-negative integers x,y.z. 

(b) The equation be x + ea y + ab z = 2abe - (be + aa +ab) is 

insolvable in non-negative integers x,y,z. 

Proof of (a): As GCD(ab,bc,ca)" 1 , there exist integers xo'YO'zO 

such that 

bc xo + ca YO + ab zo" k. 

Take 

A .. 
xo 

1 -- -a • 

B • 
YO 

1 -- -b 
, 

C .. 
Zo --c 
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so that 

A + B + C 

SOLUTIONS (13-14) 

= _(·XO + YO + ZO) 
abc 

k 
= - abc - 2 

< -2 . 

- 2 

Hence, by our initial simple fact, there are integers t,u,V such 

that 

Thus we have 

Set 

t - u > a 
1 , 

v - t > 
c 

a + Xo + at - au > 0 

b + YO + bu - bv > 0 

Zo + cv - ct > 0 

x .. a-I + Xo + at - au , 

y .. b-l + YO + bu - bv , 

Z = -1 + Zo + cv - ct , 

so that x,y,z are non-negative integers. 

Moreover 

bc x + ca y + ab Z .. 2abc - (ab + bc + ca) + k 

as required. 

Proof of (b): Suppose the equation is solvable, then 

2abc - bc(x+l) + ca(y+l) + ab(z+l) , 

where x+l,y+l,z+l are positive integers. 
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Clearly, as GCD(a,b) = GCD(b,c) = GCD(c.a) = 1 • we have that a 

divides x+l • b divides y+l • and c divides z+1 • Thus there 

are positive integers r,s.t such that 

x+l = ar, y+1· bs, z+l· ct . 

Hence we have 

2abc • abc(r + s + t) • 

that l.S 

2 = r + s + t >. 3 • 
which is impossible. 

This completes the solution. 

14. Determine a function fen) th such that the n term of the 

sequence 

(14.0) 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, ••• 

is given by [fen») 

Solution: Let u 
n 

th be the n term of the sequence (14.0) 

integer k first occurs in the sequence when 

n = 1 + 2 + 3 + ... + (k-l) + 1 = (k-l)k + 1 
2 

Hence u • k for 
n 

(14.1) n = (k-i)k + 1 + t, t a 0.1.2 ••.. ,k-l . 

From (14.1) we obtain 

and so 

(14.2) 

o S n - (k-l)k - 1 S k-l 
2 

k
2 

- k + 2 
2 

:;; n 

The 
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Multiplying (14.2) by 8 and completing the square. We have 

that is 

(2k-l)2 + 7 ~ 8n ~ (2k+1)2 - 1 , 

(2k-l)2 ~ 8n - 7 ~ (2k+l)2 - 8 < (2k+l)2 • 

2k-1 ~ 18n-7 < 2k+l • 

k~l+~<k+l; 

u = k = [(1 + 18n-7)/2] . 
n 

15. Let a l ,a2, ••• ,an be given real numbers, which are not all 

zero. Determine the least value of 

where xl •••• ,xn are real numbers satisfying 

Solution: We have, using Cauchy's inequality, 

so that 

If we choose 

( 
n 2)1/2[ n 2)1/2 

~ L a. L x. • 
i=l 1 i-1 1 

n 2 1 LX. ;:;..--;;.-
i-l 1 n 2 L a. 

• 1 1 1= 

a. 
1 

X. • (i = 1,2 •••.• n) , 
1 n 2 

L a . 
. 1 1 1= 



SOLUTIONS (15-16) 

we have 

and 

n 
L a.x ... 1 

. 111 
1" 

n 2 
L x ... 

. 1 1 1= 

1 

n 2 
L a . 

. 1 1 1-

61 

, 

n 
so the minimum value of 

n 2 
L x. subject to 

. 1 1 
L a.x. = 1 is 

. 111 

1 

n 2 1= 1= L a . 
. 1 1 1'" 

16. Evaluate the infinite series 

Solution: We have 

(n+1)3 = n(n-1) (n-2) + 6n(n-1) + 7n + 1 

so that 

co n 3 s" L (-1) (n+1) 
n=O n! 

co n .. L (-1) (n(n-1)(n-2) 

n=O 

+ 6n(n-1) + 7n + 1) 
n! 

"" n "" n "" n 
+ 6 L (-1) + 7 L (-1) + L (-1) 

2(n-2)! 1 n! 0 n! n- n= n-

"" m "" m .. -L (-1) + 6 L (-1) -
O m! 0 m! m= m= 

"" m "" m 
7 L (-1,> + L (-1,> 

m=O m. MaO m. 

"" m .. - L (-1) 

O
m! 

m-

-1 .. -e 
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J.7. F(x) is a differentiable 

for all x satisfying 0 ~ x ~ a 

example of such a function F(x) • 

Solution: As 

function such that F'(a-x) 

Evaluate ~a F(x)dx and 

F'(a-x) = F'(X) , 0 ~ x ~ a , 

we have by integrating 

-FCa-x) " F(x) + e , 

" F I (x) 

give an 

where e is a constant. Taking x = 0 we obtain e" -F(O) - F(a) , 

so that 

FCx) + F(a-x) " F(O) + FCa) . 

Integrating again we get 

(FCX) dx + (F(a-X) dx " a(F(O) + F(a) . 

As 

r F(a-x) dx " (F(X) dx , 

the desired integral has the value ;(F(O) + F(a) 

Two examples of such functions are 

where k is an arbitrary constant. 

18. (a) Let r,s,t,u be the roots of the quartic equation 

4 3 Z 
x + Ax + Bx + ex + D = 0 . 

Prove that if rs" tu then AZD" eZ . 
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(b) Let a,b,c,d be the roots of the quartic equation 

4 2 Y + py + qy + r = 0 . 

Use (a) to determine the cubic equation (in terms of p,q,r) whose 

. roots are 

ab - cd ac - bd ad - be 
a + b - c - d ' a + c - b - d ' a + d - b - c 

Solution: (a) As r,s,t,u are the roots of the quartic equation 
4 3 Z x + Ax + Bx + Cx + D • 0 , we have 

r + s + t + u '" -A , 

rst + rsu + rtu + stu = -C , 

rstu '" D 

Since rs· tu we have 

AZD = (r + s + t + u)ZrZsZ 

= (rZs + rsZ + rst + rsu)Z 

'" (rtu + stu + rst + rsu)2 
Z 

'" C • 
(b) As the roots of the equation 

4 2 
y + py + qy + r • 0 

are a,b,c,d, we have 

(18.1) 

(18.2) 

(18.3) 

(18.4) 

a + b + c + d • 0 

ab + ac + ad + be + bd + cd '" p 

abc + abd + acd + bed '" -q 

abed '" r 

Let z be a real or complex number. We begin by finding the quartic 

equation whose roots are a-z,b-z,c-z,d-z . 
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From (18.1) , we obtain 

(18.5) (a-z) + (b-z) + (c-z) + (d-z) - -4z . 

Similarly, from (18.1) and (18.2),we obtain 

(a-z) (b-z) + (a-z) (c-z) + (a-z) (d-z) + (b-z) (c-z) + (b-z) (d-z) + (c-Z)(d-z) 

• (ab + ac + ad + bc + bd + cd) - 3(a + b + c + d)z + 6z 2 , 

that is 

(18.6) (a-z)(b-z) + (a-z)(c-z) + ..• + (c-z)(d-z) = p + 6z 2 

Next, from (18.1), (18.2) and (18.3), we have 

(a-z)(b-z)(c-z)+(a-z)(b-z)(d-z)+(a-z)(c-z)(d-z)+(b-z)( c-z) (d-z) 

• (abc+abd+acd+bcd) - 2(ab+ac+ad+bc+bd+cd)z + 3(a+b+c+d)z2 - 4z 3 , 

so that 

(18.7) 
(a-z)(b-z)(c-z) + .•• + (b-z)(c-z)(d-z) 

3 
• -q - 2pz - 4z 

Also, from (18.1), (18.2), (18.3), (18.4), we have 

(a-z) (b-z) (c-z) (d-z) 

• abcd - (abc+ ..• +bcd)z + (ab+ •.. +cd)z2 - (a+b+c+d)z3 + z4 , 

so that 

(18.8) 2 4 (a-z)(b-z)(c-z)(d-z) • r + qz + pz + z 

Hence the desired quartic equation, whose roots are 

a-z b-z c-z d-z , , , , 
is 

To finish the problem we take ab - cd 
zl • a + b - c _ d ' so that 
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and thus by (a) we have 

22432 l6z l (r + qZl + pZ l + zl) = (q + 2pzl + 4z l ) • 

so that zl is a root of 

(18.9) 322 2 8qz + 4(4r - p)z - 4pqz - q • 0 

ac - bd 
Similarly z2· a + c _ b _ d and 

roots of (18.9), which is the required 

ad - bc 
Z .. -~:----;-"'---

3 a + d - b - c 
cubic equation. 
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are also 

19. Let p(x) be a monic polynomial of degree m ~ 1 , and set 

where n is a non-negative integer and D = d~ denotes differentia­

tion with respect to x. 

Prove that f (x) 
n 

Determine the ratio of the 

constant term in f (x) • 
n 

is a polynomial in x of degree 

coefficient of mn-n x in f (x) 
n 

(mn - n) 

to the 

Solution: Differentiating f (x) by the product rule, we obtain 
n 

so that 

and so 

(19.1) f +l(x) = f'(x) - p'(x)f (x) . n n n 

Clearly fO (x) .. 1 is a polynomial of degree 0, f 1 (x) .. -p I (x) is 

a polynomial of degree m-l , and f 2(x) .. -p"(x) + p'(x)2 is a poly­

nomial of degree 2m-2. With the inductive hypothesis that f (x) 
n 

is a polynomial of degree mn-n, we easily deduce from (19.1) that 
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fn+1(x) is a polynomial of degree m(n+1) - (n+1) , and hence the 

principle of mathematical induction implies that f (x) is a poly­
n 

nomial of degree (mn-n) for all n. 

Setting 
m m-1 

p(x) • x + Pm-Ix + ••• + Po 

and 

f (x) • a xmn-n + a xmn- n- l + ..• + aD ' n mn-n mn-n-l 

we obtain, from (19.1), 

mn+m-n-l 
amn+m-n-lx + ••• + aD 

• (mn-n)a xmn-n- 1 + (mn-n-1)a 1xmn-n- z + mn-n mn-n-' •• + a1 

m-1 m-2 
- (mx + (m-l)Pm_1x + ... + P1) 

mn-n mn-n-1 
(a x + a IX + .•. + aD) • mn-n mn-n-

Equating coefficients of mn+m-n-1 . x , we C)btun 

a • ~a . mn+m-n-l mn-n 

Solving this recurrence relation, we obtain 

that is 

n 
a • (-m) aD • mn-n 

a 
mn-n )0 • (-m • 
aD 

20. Determine the real function of x whose power series is 
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Solution: We make use of the complex cube of unity 

so that 

(20,1) 

w" 
-1 + R 

2 

3 2 
w • 1 • w + w + 1 ·0, 

Now, for all real x , we have 

sinh x 

325 . x w x 
Slnh wX .. wx + 3T + Sf + 

7 9 wX x 
7T+9T+ 

3 
. h 2 2x Sln wx-wx+3T+ 

527 9 wX w x x 
Sf+ 7T+9T+ 

Adding these equations and using (20.1), we obtain 

sinh x + sinh wx + 
. 3 9 

. h 2 3(x x Sln w X" 3T + 9T + 

Now 
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.. ... , 

... ) . 

sinh wx .. (-x ix!31 . [-x) [iX{3) (-x) . [iX/~ .. Slnh T + -rJ .. slnh'T cosh -rt cosh T Slnh -2--J 

.. -sinh(~)CoS[x~ + iCOSh(~)Sin(X~ , 

and similarly 

sinh wlx" -Sinh(~) cos (x~ - i COSh(~) Sin(X~ , 

and so 

giving 
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21 D~~ermine the value of the integral • 

(21. 0) I • rn(s~n nx)2 dx 
n 10 Sln x J ' 

for all positive integral values of n. 

Solution: We will show that I • nn , n· 1,2,3, •..• 
n 

From (21.0), we have for n ~ 2 

D • I - I • (n(sin2nx - sin
2

(n-l)x) dx 
n n n-1 JO sin2x 

.. (n (sin nx - sin (n-1)x)(sin nx + sin (n-l)x).dx 
JO sin2x 

.. jn 2 sinI cos(nx-I) 2 sin(nx-I) cosI 
sin2x dx 

o 

inSinx • sin (2n-l)x d 
• . x o Sln2x 

that is 

(21.1) 

where 

1
n . 

J .. sl.nmx 
m Slnx dx, m· 0,1,2, •.• 

Now, for m ~ 2 , we have 

J - J • rn (sin mx - .sin (m-2)x) dx 
m m-2 10 Sln x 
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so that 

I1T2 sin x cos (m-l)x d 
• . x o Slnx 

• 2~COS(m-1)X dx 

• 2[sin(m-1)~1T 
l m-1 Jo 

·0, 
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J • J • J • m m-2 m-4 
= {Jo " 0 , . . . J. Tr 

1 

if m even, 
if m odd. 

Hence, from (21.1), we obtain 

n ~ 1, as II. 1T • 

D • 1T , n 
n ~ 2 • so that I .. n1T , 

n 

22. During the year 1985, a convenience store, which was open 7 

days a week, sold at least one book each day, and a total of 600 

books over the entire year. Must there have been a period of consec­

utive days when exactly 129 books were sold? 

Solution: Let a. , i • 1,2,3 •••• ,365, denote the number of books 
1 

sold by the store during 

so that 

the period from the first day to 

h .th d . 1 . tel ay lnc uSlve, 

and thus 

Hence a1 ••••• a365'a1+129 ••.• ,a365+129 are 730 positive integers 

between 1 and 729 inclusive. Thus, by Dirichlet's box principle. 

two of these numbers must be the same. As a1, ••• ,a365 
distinct and a1+129 •.••• a365+129 are all distinct. one 

are all 

of the a. 
1 
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must be the same as one of the a.+129, say, 
1 

ak = at + 129, 1 S t < k S 365 

Hence ak - aih- 129 and so 129 books were sold between the (t+l)th 

day and the k day inclusive. 

23. Find a polynomial f(x,y) with rational coefficients such 

that as m and n run through all positive integral values, f(m,n) 

takes on all positive integral values once and once only. 

Solution: For any positive integer k we can define a unique pair 

of integers (r,m) by 

(r-l) (r-2) k ~ r(r-1) 
2 <.. 2 ' 

m = k _ (r-1)(r-2) 
2 

Clearly we have 

O < < r(r-1) (r-l) (r-2) 
m - 2 - 2 = r-1 , 

that is 

1 S m < r • 

so that rand m are positive integers. Moreover, we can define 

a positive integer n uniquely by r = m + n , which gives 

k = (m+n-1)(m+n-2) + 
2 m , 

and a polynomial of the required type is therefore 

f(x,y) • (x+y-1)(x+y-2) 
2 +x. 
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24, Let m be a positive squarefree integer. Let R,S be 

positive integers. Give a condition involving R,S,m which guaran­

tees that there do not exist rational numbers X,y,z and w such that 

(24.0) 

Solution: If there exist rational numbers x,y,z and w such that 

(24.0) holds then 

R - 2SIiii' = (x-yliii') 2 + (z-wliii') 2 ;,: 0 , 

and so a condition that will guarantee the non-solvability of (24.0) 

is R - 2SIiii' < 0 , that is 

.!. < ,-2S t'm. 

25, Let k and h be integers with 1 ~ k < h. Evaluate the 

limit 

L .. lim 
n-lo CO 

hn ( ) r IT 1 - -2 • 

r"kn+l n 

Solution: For Ixl < 1 we have 

and so 

giving 

co S 

.en. (1 - x) = - '\ ~ 
t. s ' s .. l 

x + .en. (1 - x) • 

I x + In (1 - x) I .. 

co S 
- I' ~ 

I.. s ' s-2 

co s 
L~ s s=2 

~~ 
s=2 s 
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Taking 

~.!. 
2 

:>0 

L 
s-2 

"2(!~1:1) 
(kn < r ~ hn) we obtain 
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Thus we obtain 

I hn ( 
! L ~z 
Ir=kn+l , 

showing that 

(25.1) hn [ lim L rz + 
n +00 r-kn+l n 

Next we have 

hn 2 
L r 

r-kn+l 

+ 0 as n + 00 , 



so that 

(25.2) 
hn r 

lim ~ - .. 
L. n2 

n .... oo r-kn+l 

Thus from (25.1) and (25.2) we obtain 

and so 

hn 
lim .en. IT (l - ! ) -

n2 
n .... oo r"kn+1 

lim 
hn r 
IT (l--) 

n2 
n .... oo r=kn+l 
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26. Let f(x) be a continuous function on [O,a] such that 

f(x)f(a-x) .. 1 , where a > 0. Prove that there exist infinitely 

many such functions f(x) • and evaluate 

r
o

a dx 
j, 1 + f (x) 

a x--
Solution: The function f(x)" e 2 is continuous for all x and 

satisfies f(x)f(a-x)" 1 , so that f(x)n (n ~ 0,1,2, ••• 

gives an infinite family of functions of the required type. 

Setting X" a - y we obtain 

I dx 
f
a 

.. ° 1 + f(x) 
.. -dy 

I.

0 

1 + f(a-y) 
a 

.. dy .. f(y)dy (a (a 
1 + f(a-y) fey) + 1 

.. r {1 - 1 + ~(y) } dy 
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• a - I , 
a 

so that I = "2 • 

27. The positive numbers a1,a2,a3, ••• satisfy 

(27.0) 

Is it true that a = r r for r = 1,2,3, ... ? 

Solution: The answer is yes. We proceed by mathematical induction, 

making use of the identity 

13 + 23 + ..• + n3 • (1 + 2 + •.• + n)2 • 

Taking n· 1 

because a1 > 0 • 

in (27.0) gives 3 2 
a l • a1 ' which means that a1 • 1 

Next, assume that ~. k for k = 1,2, ••• ,n-1 

(27.0) gives 

13 + 23 + 

so that 

••• + (n-1)3 + a3 • (1 + 2 + 
n 

... + 

The equation 

2 (n-1) + a ) 
n 

0+2+ ••• +(n-1)) 2 + a3 • (1+2+ ••• +(n-1» 2 + 2(l+2+ ... +(n-1»a + a2 , 
n n n 

that is, 

(27.1) 3 a • 
n 

2 (n-1) n a + a . n n 

As a > 0 , we see that (27.1) gives a = n , thus completing the 
n n 

inductive step. 
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28. Let p > 0 be a real number and let n be a non-negative 

integer. 

(28.0) 

Solution: 

Evaluate 

[ 
-px n u (p) = e sin x dx • 

n 0 

For n ~ 2 and p > 0 , integrating 

parts we obtain 

u = 
n 

1 -px n --e sin x p 
'" [ n-1 + n sin x cos x 
o 0 

n f n-l -px .. - sin x cos x e dx 
p 0 

u .. u (p) 
n n 

-px e • -- dx 
p 

by 

Integrating by parts again, we get 

that is 

u .. !!.{ 
n p 

1 -px n-1 - - e sin x cos x 
p 

'" 
o 

(n-1)s1n x cos x -( 
n-2 2 

) 
-px n e 

sin x -p-

n n-1 - x n-2 n - x n r 2r .. (p) e p sin x dx - P 2 e p sin x dx , 

u = n(n-l) 
n p 

2 
n 

u 2--2u , n- n p 
n ~ 2 • 

Thus we have 

, n;::2, 

dx } 
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giving 

n(n-l) (n-2) (n-3) 2'1 if • u n even, 
2+ 2 (n_2)2+p2 

••• 
22+p2 0 • 

n p 
U • 
n n(n-O (n-2) (n-3) 3'2 • u if n odd • 2 2 (n_2)2+p2 

••• 
32+P2 1 

, 
U+p 

One easily sees that 1 and 1 
• so that Uo . - u1 • P 1 + P 

2 

n! 
n/2 ' if n even, 

p It «21)2 + p2) 

u • n 

i-I 

nl 
-:'( n--~I-:-) /~2~::":"----' if n odd. 

IT «2i+1)2 + p2) 
i-O 

29. Evaluate 

n-2 
(29.0) ~ r 11 

I.. 2 tan - , 
r=O 2n- r 

for integers n ~ 2 • 

solution: We use the identity 

tan A • cot A - 2 cot 2A • 

which is easily verified as 

2 2 
2 t 2A • 2 cos 2A .. cos A - sin A 

co sin 2A sin A cos A .. cot A - tan A 

Then we have 

n-2 n-2 ( r 1T r 11 L 2 tan -- = ~ 2 cot - -n-r I.. n-r r-O 2 r=O 2 
2 cot 11 1) n-r-

2 
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n-2 n-2 
• I;' 2r cot.....1L- _ L 2r+1cot 1T 

t.. n-r 2n-r-1 r-O 2 r-O 

n-2 n-l 
I;' r 1T I;' r 1T 

• t.. 2 cot - - t.. 2 cot -
r-O 2n- r r-1 2n- r 

2n-1cot 1T 
2n-(n-1) 

1T 2n- 1 t 1T .. cot - - co-
2n 2 

1T .. cot - • 
2
n 

Second solution (due to L. Smith): 

For 0 < B < 21T we consider the integral 

B (n-2 ) 
I(B) '" ~ L 2r

tan ~ dA 
O n-r 

r'" 2 

n-2 n-r A B 
• 2 blCOS-

2n- r 0 
.. L 2r 

r"O 

n-2 
• 2n L tn. cos-L 

r-O 2n- r 

n-2 
n B 

• 2 tn. IT cos ----
r-O 2n- r 

[

sin B ] 
.. 2

n
tn. a-1 2 B 

2 sin-
2
n 

77 
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2n.t . B 
• 11. Sl.n 2' -

Differentiating we obtain 

II(B) B = cot --
2
n 

n-l B 
2 cot 2" 

Taking B - rr we get 

n-2 
~ r rr 
l. 2 tan - .. 
O "n-r r= .. 

30. Let n ~ 2 be an integer. A selection {s .. ai : i-l.2 ••••• k) 

of k (2 S k S n) elements from the set N· {1.2.3 •.•• ,n} such that 

al < a2 < ••• < ~ 

define 

is called a k-selection. For any k-selection s , 

If a k-selection S is chosen at random from N. what is the prob­

ability that 

W(S) .. r • 

where r is a natural number? 

Solution: Let f (n.k). 2 S k S n. denote the number of r 
k-selections S from N such that W(S) ~ r , 

r" 1.2,3, •••• We will show that 

(30 • l) f r (n, k) .. (n- (k-~ (r-l)). r. 1, 2 • 3, ... , 

where (:) .. 0 for any integer 

enumerates all k-selections S 

m < k. When r" 1, f1(n,k) 

from N. so that fl(n,k)" (~) • 

and hence (30.1) holds in this case. Now suppose r ~ 2. Let 

S .. {a1'a2' •••• ~} be a k-selection from N with W(S) ~ r , 
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so that a
i 

+ r ~ ai+l for i = 1,2, ... ,k-l. The mapping F 

defined by 

79 

(30.2) F(S) a {a
l

, a2 - (r-l), a
3 

- 2(r-l), •.• , ak - (k-l)Cr-l)} 

associates with a k-selection S from N having W(S) ~ r , a k­

selection from the set 

M .. {l, 2, ... , n - (k-l)(r-l)} 

Clearly F is one-to-one and onto, so that fr(n.k) is just the 

number of k-selections from M, which is given by the right side of 

(30.1). 

Thus the required probability is 

fr(n,k) - fr+1(n.k) 

fl(n,k) 

(n-Ck-~ (r-l)) _ (n-Ck; 1) r) 

(~) 

31. Let k ~ 2 be a fixed integer. For n" 1,2.3 •... define 

a = n 

Evaluate the series 

1 , if n is not a multiple of k, 

-(k-l) if n is a multiple of k. 

"" a 
~ 2: . 

n n=l 

solution: Let s be the sum of the first n terms of the given 
n 

series. For each n ~ 1 we have uniquely 

n = kq + r • 0 ~ r < k , n n n 

and since 

-(k-l)/tk • I/tk - lit 

for t = l,2 •••. ,q ,we have 
n 
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Now. n • q (k + r /q ) so n n n 

tn n • tn q + tn (k + r / q ) • n n n 

and hence 

(1 + 21 + •.• +.l.. - .tn q ) + .en (k + r / q ) q n n n n 
"u-v+w. n n n 

The sequence {u: n" 1.2,3 •..• } converges to Euler's constant c; 
n 

the sequence {v: n" 1.2.3, •.. } also converges to c as n + ~ 
n 

imp 1 ies q +~; and the sequence {w: n .. 1.2.3,...} converges to 
n n ~ 

tn k as r is bounded. Thus. we have L1!n .. tn k . n p n 

32. Prove that 

[ 
m-x 

OX e sin x dx • 

for m· 0.1,2 •••• 

Solution: We set for m" 0.1.2 •••• 

S .. 
m 

c .. 
m 

E • m 

~
~ 

m -x x e sin x dx • 

i m-x 
~ x e cos x dx • 

i m (i-l)x d 
~ x ex. 
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As 

ix e II cos X + i sin x , 

we have 

E -C +is m m m 

Integrating E (m ~ 1) by parts, we obtain m 

E .. 
m ( 

1 (i-l)x m- e 
m x ;;;...,.... -=1- dx 

1-

Hence we have 

-m =-E ,m>.l. i-lm-l 

E .. 
m 

m 
(-1) m! 

(i-Om 

1 Clearly EO '" - I=r ' so that for m ~ 0 

E '" m 

(_l)m+l ml 

(i_Om+l 
.. m! (i+l)m+l 

2m+l 

Finally, we obtain for m ~ 0 

1 -S .. --:-(E - E ) m 21 m m 

and so, by Demoivre's theorem, we have 

m+l m+l 
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m! 22 1T 7f Sm .. ~~ (cos (m+l)-4 + i sin(m+1)-4) -
2m+2i 

2-2-(coS(m+l) ~ - i sin(m+l) ~) 

m ~ 0 
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33. For a real number u set 

(33.0) 
rrr . 2 

I(u) • 10.tn(1 - 2ucosx + u ) dx • 

Prove that 
I(u) • I(-u) • ~ I(}) 

and hence evaluate I(u) for all values of u 

, 

Solution: We will show that 

(33.1) I(u) .. 
o , if lui ~ 1 • 

2rr.tnlul , if lui> 1 

First, we prove that 

(33.2) I(u) • I(-u) • 

Setting X" rr - y in (33.0). we obtain 

Next we show that 

(33.3) 

We have 

I(u) .. r .tn(l + 2u cos y + u
2
) dy 

.. I(-u) • 

(1 - 2ucosx + u2)(1 + 2ucosx + u2) • (1 + u2)2 - (2ucosx)2 

.. 1 + u4 + 2u
2

(1 - 2cos2x) 

2 4 
• 1 - 2u cos2x + u • 

so that 

.tn(l-2ucosx+}) + .tn(1+2ucosx+u2) .. .tn(l-2u2cos2x+u4) • 

and thus 

(rr 2 4 
I(u) + I(-u) .. ~ .tn(1 - 2u cos 2x + u ) dx , 
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and setting y = 2x , we obtain 

1 (271 2 4 
I(u) + I(-u) .. '2 ~ tnO - 2u cos y + u ) dy 

1 2 1 f271 2 4 ,. '2 I(u ) + '2 71 tn(l - 2u cos y + u ) 

Setting y = 271 - z in the last integral, we obtain 

(271 2 4 2 lrr tYl(l - 2u cosy + u ) dy .. I(u ) , 

proving (33.3) as required. 

From (33.2) and (33.3), we deduce 

1 2 (33.4) I(u) .. I(-u) .. '2I(u ) . 

so 

For lui = 1 , that is U" ±l, we have 

1 1(1) .. 1(-1) .. '2 1(1) , 

1(1) .. 1(-1) .. 0 • 

For lui < 1 we have 

1 2 1 4 1 8 I(u) .. - 1(u ) .. -- I(u ) .. -- I(u ) 
2 22 23 

1 2
n 

....... -- I(u ) , 
2
n 

for all positive integers n. Letting n + + 00 , we have 

as lui < 1 ,and I(u) being continuous gives 

n 
lim I(u2 ),. 1(0) 

n+oo 

dy • 

[In fact it follows from (33.4) that 1(0) .. 0 .J 
we obtain 

Hence, as 1 
-- + 0 

n • 2 

lim 
n+oo 
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giving 

Next. for 

leu) = 0 , 

I u I > 1 • we set 

for u > 0 , we have 

for I u I < 1 . 

1 u .. - • so that 
v o < Ivl < I . 

leu) (IT 2 1 
.. ~ .tn(l - 'Vcosx +;) dx 

rn 2 
= J

o 
Un(l - 2v cos x + v ) - 2.tnv} dx 

= l(v) - 2.tnv rdX 
.. 0 - 2n.tn v 

.. 2n.tn u • 

Finally, if u < 0 , we have 

leu) .. l(-u) .. 2n.tn (-u) • 

so that for all u with lui > 1 we have 

I( u) .. 2n.e.n I u I . 

Then, 

34. For each natural number k ~ 2 the set of natural numbers 

is partitioned into a sequence of sets {A (k): n" 1,2,3 •••• } as 
n 

follows: A1(k) consists of the first k natural numbers, A2(k) 

consists of the next k+l natural numbers, A3(k) consists of the 

next k+2 natural numbers, etc. The sum of the natural numbers in 

A (k) is denoted by s (k) . Determine the least value of n" n(k) 
n n 

such that s (k) > 3k3 - Sk2 , for k .. 2.3 •••. 
n 
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Solution: The last element in An(k) is the number 

k + (k+1) + (k+2) + ..• + (k+n-1) ., nk + (1+2+ ..• +(n-1» 

• nk + (n-1)n 
2 
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Since there are k+n-1 numbers in An(k) • the first element in 

A (k) is 
n 

(nk+(n-21)n) - (k+n-l) + 1" (n-l)k + ;(n2 -3n+4) 

Hence we have 

(34.1) s (k)" (k+n-l) (2n-1)k+(n2 -2n+2») 
n 2 

Taking k" 2,3,4,5 in (34.1) suggests that n" k may be the 

required value of n. To prove this conjecture we calculate sk-1(k) 

and sk(k) . We have 

sk_1(k)" (k-l)(3k
2

-7k+5)" 3k3 -10k2 +12k-S 

and 

One easily checks that for k" 2.3 •..• 

so that n(k)" k is the required minimal value. 

35. Let 

that p ;;: 1 
n 

(35.0) 

converge? 

{p : n ., 1,2,3 •..• } be a sequence of real numbers such 
n 

for n" 1,2,3, ..•. Does the series 

[p ]-1 

n~1 ([P11+1)([P21+1)"'([Pn]+1) 

<Xl 
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Solution: The answer is yes. 

Let 

Then we have for m ~ 1 , 

S = m 

.m 
~ a n n=l 

n'" 1,2, ••. 

Pl' •• Pm 

~ 1 __ --=:.1 __ 

Pl" ·Pm+1 

= Sm+l ' 

so that {S: m = 1,2,3, ••. } 
m 

bounded above by 1. Hence 

converges. Finally, as 

[p 1 - 1 

is an increasing sequence which is 

'" lim S exists, showing that E1a m n= n 
m-+'" 

n 
..,.( """[ P-1'""] +'-;"1"<'") ("'[-p 2"';];""+'="'1)=-·-· -:. C,..,.t -P n .... j-:-+l:-<"") :;; an' n '" 1,2,3, ... 

the series given by (35.0) converges by the comparison test. 

36. Let f(x) , g(x) be polynomials with real coefficients of 

degrees n+1, n respectively, where n ~ 0 , and with positive 

leading coefficients A, B respectively. Evaluate 

L = lim 
x-+'" 

in terms of A, Band n . 

( ) Ix f (t) - f (x) d g x ex, 
o 

qo1ution: As A> 0 and B > 0 , we have 
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and 

Moreover 

so, by L'Hopital's 

lim 
x+<» 

f(x) 
lim e • +00 g(x) • 

x+<» 

lim 
d~[l\f(t) dt) 

d (ef(X») x+<» 
dx g(x~ 

(x)2 
• lim f'(x)g~x) - g'(x) X+ IXI 

2 2n - lim B x + .•. 
x+<» AB(n+oin + ••• 

B 
= (n+OA , 

rule, we have 

L - lim 

• lim 
x+ oo 

B 

(ef(t) dt 

ef{x)/g(x) 

icQxef(t) dt J 

d~( ef(x) Ig(x)] 

= (n+l)A 

87 
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"51. The lengths of two a1 ti tudes of a triangle are hand k , 

where h ~ k. Determine upper and lower bounds for the length of 

the third altitude in terms of hand k. 

Solution: We show that 

(37,1) hk <i < hk 
h+k Jh-kJ 

Let the points P,Q,R be chosen on the sides BC,CA,AB (possibly 

extended) respectively of the triangle ABC so that AP,BQ,CR are 

the altitudes of the triangle. Set a = IBCI, b· ICAI , c = IABI, 

h= IAPI, k= IBQI ,i- ICRI Clearly 

ah = bk = cl , 

so that 

a i b i -=- -:-
C h' c k' 

Without loss of generality we may suppose that h < k. From the 

inequality 

we obtain 

so that 

that is 

Also from the inequality 

we obtain 

a < b + c , 

l < hk 
k-h 

c<a+b, 
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that is 

t> hk 
h+k 

This completes the proof of (37.1). 

38. Prove that 

P '" P (x) '" n,r n,r 
(1_xn+l)(1_xn+2) ••• (1_xn-r) 

(1-x)(1-x2) •.. (1-xr ) 

89 

is a polynomial in x of degree 

(When r '" 0 negative 

to be 1 

integers. 

and we have P 0 = 1 n, 

nr ,where nand rare non­

the empty product is understood 

for all n ~ 0 .) 

Solution: For n ~ 0 and r ~ 1 we have 

r P - x P n+l,r n,r 

so that 

(38.1) 

(l_xn+2) ••• (1_xn+r ) . , 
r-1 (l-x) ... (i-x ) 

P _ xrp '" P 
n+l,r n,r n+1,r-1 

(1_xn+1) ..• (1_xn+r ) 

(I-x) •.. Cl-xr ) 

We now make the inductive hypothesis that P is a polynomial n,r 
of degree nr for all pairs 

fying n + r ~ k, where k 

(n, r) of non-negative integers sat is-

is a non-negative integer. This is 

clearly true when k· 0 , as, in this case, we must have n '" r '" 0, 

and PO,O '" 1. Now let (n,r) be a pair of non-negative integers 

such that n + r = k + 1 For n ~ 1 and r ~ 1 , by (38.1), we have 
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(38.2) r 
P ,. x P 1 + Pl' n,r n- ,r n,r-

As (n-l) + r ,. n + (r-l) '" k , by the inductive hypothesis, P 1 n- ,r 
is a polynomial of degree (n-l)r and 

degree n(r-l) . Hence, by (38.2), P n,r 

P n,r-l is a polynomial of 

is a polynomial of degree 

max(r + (n-l)r , n(r-1» = nr . 

P is clearly a polynomial of degree 0 in the remaining cases 
n,r 

n ,. 0 and r '" O. The result now follows by the principle of 

mathematical induction. 

39, Let A, B, C, D, E be integers such that B ~ 0 and 

Prove that the number N of pairs of integers (x,y) such that 

(39.0) 2 Ax + Bxy + Cx + Dy +E '" 0 , 

satisfies 

where, for integers n ~ 1 ,d(n) denotes the number of positive 

divisors of n. 

Solution: Let (x,y) be a solution in integers of (39.0), so that 

(39.1) -(Bx + D)y = (Ax2 + Cx + E) . 

We define an integer z by 

(39.2) z ,. - (Bx + D) , 
1 

so that x '" - B (z + D) . 

Clearly z ~ 0 , for otherwise x,. -DiB and from (39.1) we would 

2 
have AD - CD + E ,. 0 , contradicting F ~ 0 From (39.1) and 

B2 B 
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(39.2) we have 

2 2 2 B zy • A(z+D) - BC(z+D) + BE, 

that is 

z(B2y - Az - (2AD-BC» • F , 

so that z is a divisor of F • 

Thus the total number of possibilities for z is S 2d(IFI) • 

For each such z there is at most one possibility for x, 

namely, x = - ~ (z + D) if this is an integer. As (39.1) implies 

that each x determines at most one y, the total number of pairs 

(x,y) is :;; 2d(IFI) 

n 
40, Evaluate L 

k"l 

k 

Solution: We have for k ~ 1 

and 

.. f(k-l) - f(k) , 

where 

1 
f(x)" 2 ' 

x + x + 1 

so that 

1 = 2 (f(O) - fen»~ 

1 
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L11, Let P • P (n) denote the sum of all positive products of 
m m 

m different integers chosen from the set {1,2, ... ,n}. Find 

formulae for P2(n) and P3(n) . 

Solution: We will show that 

1 1 2 2 
P2 • 24 n(n+1) (n-1) (3n+2) , P3 • 48 n (n+1) (n-1)(n-2) 

We begin by considering 

so that, with Po = 1 and x sufficiently small, 

Hence we obtain 
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that is 

(41.1) 

and so. for r • 0,1.2 •...• n • 

P = (_l)r coefficient of xr on the right of (41.1) • 
r 

Thus we have 

2 2 (_l)h [ ~ xl (n l)]h 
P 2 .. coeff. of x in L h! L T L k 

h-O l=l k-1 

1 n 2 1 [n )2 .. -- L k + -, L k 
2 k-1 2. k=l 

.. _1 n(n+l) (2n+1) + l(n(n+l))
2 

2 6 2 2 

1 = 24 n(n+1) (n-1) (3n+2) • 

and 

P3 - coeff. of 3. 3 (_l)h-1[ ~ l( n l)]h 
x In L hI L T L k 

h-O i-I k-l 

_ + 1. ( ~ k 3) _ 1, ( ~ k) ( ~ k 2) + 1- [ ~ k) 3 
3 k-1 2. k-1 k=l 3 I k=1 

122122 133 .. 12 n (n+1) - 24 n (n+1) (2n+1) + 48 n (n+1) 

1 2 2 .. 48 n (n+1) (n-1)(n-2) • 

42, For a > b > 0 • evaluate the integral 

(42.0) 
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Solution: For any constant C, the function 

1S such that 

x e f(x) .. ---+ C 
eX + 1 

o , 

ax bx 
f (ax) - f (bx) .. _.;..e __ -_e::;-_ 

(e ax +1) (e bX+l) 

For t > 0 we have 

J(t) '" 

lo
t lt ax bx 

_-:e:--_---C.e;---_ dx" 0 f( ax) x- f (bx) dx 
x(eax+l) (ebx+l) 

.. rt f(ax) dx _ rt f(bx) dx , 
Jo X Jo x 

provided both the latter 

This is guaranteed if 

integrals 

l
' f (y) 
1m-­

y+o y 

exis t. 

exists, which holds if and only 

if C 1 .. --
2 

1 With the choice C .. -2' we have 

J(t) .. fu.!.. dy - fey) dy 
f
at) J,bt 

o y 0 y 

(
at f( ) 

.. -L dy 
t y 

Now lim f(x) = ~ so that given any E; > 0 there exists a positive 
x+ OO 

real number xo" XO(E;) such that 

1 1 
x > Xo .~ 2 - E; < f (x) < 2 + E; • 

If t > xO/b , then at > bt > Xo ' and so we have 
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[

at (1. _ e:) 

(1. - e:) .en! .. 2 dy 
2 b y 

t 

< J(t) 

1 D •• a .. (- + e:) ·w-2 b 

Since e: is arbitrary we obtain 

lim J ( t) .. Len a , 
2 b 

t+ oo 

that is 

e - e 
[

ax bx 

43. For integers n ~ 1 , determine the sum of n terms of the 

series 

(43.0) ~ + 2n(2n-2) 2n(2n-2) (2n-4) 
2n-l (2n-l)(2n-3) + (2n-l)(2n-3)(2n-5) + " .. " 

Solution: Let S denote the sum of n terms of the given series 
n 

(43.0). We have 

2 
SI " T " 2 , 

4 4·2 4 8 12 S "-+- .. -+-=-=4 2 3 3·1 3 3 3 ' 

S .. ~ + 6'4 + 6·4·2 " 18+24+48 .. 90 .. 6 
3 5 5·3 5-3,1 15 15 
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These values suggest the conjecture S : 2n for all positive integ­
n 

ers n First. as s .. 2 • the conjecture holds for n" 1 . 
1 

Assume that 

Then we 

S 
n 

have 

.. 2n holds for n" m • 

S 2m+2 + 2m+2 (2m + 2m(2m-2) 
m+l .. 2m+l 2m+1 2m-l (2m-l) (2m-3) + ... (m terms) ] 

.. ~ + 2m+2 • 2m 
2m+l 2m+l 

2m+2 .. 2ai+T (l + 2m) 

.. 2m+2 • 

showing that S .. 2n 
n 

ciple of mathematical 

is true for n" m + 1 • Hence. by the prin­

induction. S .. 2n is true for all positive 
n 

integers n. 

44. Let m be a fixed positive integer and let zl.z2 ••••• zk 

be k (~l) 

(44.0) 

complex numbers such that 

for all s .. m.m+l,m+2 •...• m+k-l. Must z ... 0 
1 

for i '" 1.2 ..... k? 

Solution: The answer is yes. To see this, let zl,z2, ..• ,zk be the 

roots of the equation 

We will show that aO " O. Suppose aO ~ O. Clearly zl,z2, ... ,zk 

are also roots of 

m+k-l m+k-2 
.z + ak- 1 z + ... 
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Hence for i .. 1,2, .•• ,k we have 

(44.1) 

Adding the equations in (44.1) and appealing to (44.0) we obtain 

As aO ~ 0 we have 

~ m-l aO I.. z. 
· 1 1 l-

·0. 

II; m-l 
L z. .. 0 • 

· 1 1 l'" 

(44.2) m+k-2 m+k-3 
Z + ak_1z + •.. 

Taking Z D Z •• i = 1,2, ••• ,k , in (44.2) and adding the equations 
1 

we obtain as before 

.~ m-2 
L z. .. 0 • 

· 1 1 l'" 

Repeating the argument we eventually obtain 

~ z ... 0 , 
· 1 1 1'" 

and one more application then gives aOk" 0 , which is impossible. 

Hence we must have aO • 0 , that is 

and so at least one of the z. is o , say zk .. 0 . The argument 
1 

can then be applied to Z l' ... , zk-l to prove that at least one of 

these is 0 , say zk-l • 0 Continuing in this way we obtain 
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45. Let A .. (a .. ) be the nxn matrix where 
n lJ 

x , if i ,. j , 
a .. ,. - 1 , if li-jl .. 1 , 
lJ 

0 , otherwise, 

where x > 2 • Evaluate D ,. det A 
n n 

Solution: Expanding D by the first row, we obtain 
n 

D = xD 1 - D 2' n n- n-

so that 

(45.1) D - xD 1 + D 2" 0 • n n- n-

The auxiliary equation for this difference equation is 

2 t - xt + 1 .. 0 , 

which has the distinct real solutions 

as x > 2 

given by 

x ± IX'2'='4 
t ,. 2 

Thus the solution of the difference equation (45.1) is 

for some constants A and B 

We now set for convenience 

a .. ;(x + Ix2 -4) , 

1 r:-:;;-r 1 so that, as I(x + vx2 -4) • I(x - Ix2 -4) ,. 1 , 

! ,. ;(x - /x2 -4) , 
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which gives 
n -n D = Aa + Ba , n· 1,2,3, ••.• 

n 

Now 

1 B 
D • x • a + - • Aa + -1 a a 

and 

2 
D2 = x-I f 1) 2 2 1 = a + - - 1 = a + -- + 1 

t a a2 

so that 

2 2 
a A + B = a + 1 • 

(45.2) 442 a A + B .. a + a + 1 • 

Solving (45.2) for A and B yields 

so that 

that 1S 

2 
A .. -;;-,a,,--_ 

2 
B .. -1 

2 
a - 1 a - 1 

2 
a n 1 1 

D --2- a --2--n' 
n a -1 a -1 a 

D .. 
n 

2n+2 1 a -
n 2 • a (a -1) 

n .. 1,2,3, ... 

2 B 
.. Aa + 2" 

a 

99 

46, Determine a necessary and sufficient condition for the equa­

tions 

(46.0) 

x + y + z '" A , 
222 x+y+z-B, 

x3 + y3 + z3 .. C 

to have a solution with at least one of X,y,z equal to zero. 
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Solution: Let x.y,z be a solution of (46.0). Then, from the 

identity 

(x+y+z)2 .. x2 + y2 + z2 + 2(xy+yz+zx) • 

and (46.0), we deduce that 

(46.1) 
1 2 

xy + yz + zx c z(A - B) 

Next, from the identity 

we obtain using (46.1) 

C - 3xyz" A(B - ~(A2_B»)" ~AB - ;A3 , 

so that 

(46.2) 1 3 3 3xyz .. - A - - AB + C 2 2 

Hence a solution (x,y,z) of (46.0) has at least one of x,y,z 

zero if and only if xyz" 0 , that is,by (46.2). if and only if the 

condition A3 - 3AB + 2C .. 0 holds. 

47. Let S be a set of k distinct integers chosen from 
n 1.2,3 •.•.• 10 -1 ,where n is a positive integer. Prove that if 

(47.0) 

it is possible to find 2 disjoint subsets of S whose members 

have the same sum. 

Solution: The integers in S are all ~ lOn- l 

the integers In any subset of S is 

Hence the sum of 
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The number of non-empty subsets of S is 2k_l From (47.0) we have 

and so, by Dirichlet's box principle, there must exist at least two 

different subsets of S. say S1 and S2' which have the same sum. 

If S1 and S2 are disjoint the problem is solved. 

If not, removal of the common elements from 51 and S2 yields 

two new subsets S' and 
1 52 with the required property. 

48. Let n be a positive integer. Is it possible for 6n 

distinct straight lines in the Euclidean plane to be situated so as 

to have at least 6n2-3n points where exactly three of these lines 

intersect and at least 6n+1 points where exactly two of these 

lines intersect? 

Solution: Any two distinct lines in the plane meet in at most one 

point. There are altogether (~n) a 3n(6n-l) pairs of 

lines. A triple intersection accounts for 3 of these pairs of 

lines, and a simple intersection accounts for one pair. As 

(6n2-3n)3 + (6n+l)1 

.. 18n 2 - 3n + 1 

> 3n(6n - 1) 

the configuration is impossible. 

49. Let S be a set with n (~1) elements. Determine an 

explicit formula for the number A(n) of subsets of S whose 

cardinality is a multiple of 3 
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Solution: The number of subsets of S containing 3l elements lS 

l .. 0,1,2, ... ,(n/3) Thus, we have 

(49.1) 
(n/3) () n ( ) 

A(n) = I 3~ = L n 
l=O k:O k 

k==O (mod 3) 

Let w" ~(-1 + i(3) so that 

w2 = ;(-1 - i(3) , 3 w .. 1 , 

and, for r" 0,1,2 , define 

S I [n) 
r .. k"O k 

k==r (mod 3) 

Then, by the binomial theorem, we have 

(49.2) 

(49.3) n [ ) n n k 2 
(1 + w) .. I k w .. So + wS 1 + w S2 ' 

k=O 

(49.4) 2 n ¥ (n) 2k 2 (1 + w) = ~ k w .. So + w Sl + wS 2 . 
k"O 

Adding (49.2), (49.3), (49.4), we obtain, as 2 1 + w + w .. 0 , 

so that 

Hence we have 

A(n) .. 
t (2n + 2(-1)n), if n == 0 (mod 3) , 

~ (2n - (_1)n) , if n ~ 0 (mod 3) 
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50. For each integer n ~ 1 , prove that there is a polynomial 

p (x) with integral coefficients such that 
n 

Define the rational number a by 
n 

(50.0) (-1)n-1i1 
a" 1 p (x) dx , 
n 4n- a n 

Prove that a satisfies the inequality 
n 

n·1,2, ... 

n:= 1,2, ... 

Solution (due to L. Smith): Let Z denote the domain of rational 

integers and Z[ i] '" {a+bi: a,b € Z} 

the domain of gaussian integers. For n = 1,2,3, ..• set 

(50.1 ) 4n 4n n n 
q (x) = x (l-x) - (-1) 4 

n ' 

so q (x) € Z[x] 
n 

As q (±i) DO, q ex) is divisible by x+i and 
n n 2 

x-i in Z[i][x] , and so p ex) • q (x) / (x +1) € Z( i)(xj 
n n However 

p (x) € R[x] • and as R[x] n Z[i] [x] • Z[xj , we have p (x) € Z[xj . 
n n 

This proves the first part of the question. 

For the second part, we note that 

so that 

. x Cl-x) dx '" p (x) dx + (_l)n4n 
[
1 4n 4n i1 

(1 
1+x2 n 

1 r dx Tf 
Now, as J

O 
1+x2 = '4 ' we have using (50.0) 

dx 
l+x2 
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ITI _ a I = ~ ]1 
n n-l 

4 0 

Now 

1 
as x(l-x) $ 4 ' and thus we have 

completing the second part of the question. 

51. In last year's boxing contest, each of the 23 boxers from 

the blue team fought exactly one of the 23 boxers from the green 

team, in accordance with the contest regulation that opponents may 

only fight if the absolute difference of their weights is less than 

one kilogram. 

Assuming that this year the members of both teams remain the same 

as last year and that their weights are unchanged, show that the 

contest regulation is satisfied if the lightest member of the blue 

team fights the lightest member of the green team, the next lightest 

member of the blue team fights the next lightest member of the green 

team, and so on. 

Solution: More generally we consider teams, each containing n mem­

bers, such that the absolute difference of weights of oppo­

nents last year was less than d kilograms. 

Let Bl ,B2, •• "., Bn denote the members of the blue team with weights 

b l :i: b2 ~ .. d bn ' 
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and let G1,G2, ..• ,Gn denote the members of the green team with 

weights 

For each r with 1 S r S n , we consider this year's opponents B 
r 

and Gr' We show that Ib - g I S d. We treat only the case r r 
br ~ gr as the case br S gr is similar. If there exists s with 

r < s S nand t with 1 S t S r such that Bs fought Gt last 

year, then br - gr S bs - gt S d. If not, then every boxer 

with r < s S n was paired with an opponent Gt with r < t 

B 
s 

S n 

last year, and thus B must have been paired with some G with r u 
1 SuS r last year. Thus we have 

b - g S b - g S d • r r r u 

This completes the proof. 

52. Let S be the set of all composite positive odd integers 

less than 79. 

(a) Show that S may be written as the union of three (not 

necessarily disjoint) arithmetic progressions. 

(b) Show that S cannot be written as the union of two arith­

metic progressions. 

Solution: (a) Each member of S can be written in the form 

(2r + 1)(2r + 2s + 1) , 

for suitable integers r >. 1 and s >. 0 , and so belongs to the 

arithmetic progression with first term (2r+l)2 and common diff­

erence 2(2r+l) • Taking r = 1,2,3 we define arithmetic progres­

sions A1,A2,A
3 

as follows: 
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Al == {9,ls,21,27,33,39,4s,sl,s7,63,69,7s}, 

A2 = {2s,3s,4s,ss,6s,7s} 

A3 • {49,63,77} 

It is easily checked that 

(b) Suppose that 

S-AuB, 

where 

A '" {a, a+b , ••• , a+(m-l)b} 

and 

B '" {c , c+d ••.• , c+(n-l)d} • 

Without loss of generality we may take a = 9 Then we have either 

a + b = 15 or c· IS. In the former case A '" Al and so c· 25 , 

c + d • 35 giving B = A2 • This is impossible as 49 is neither 

in A nor B. In the latter case either a + b '" 21 or c + d = 21. 

If a + b '" 21 we have A· {9,21,33,4s,s7,69} and so c + d • 27 

giving B '" {15,27,39,sl,63,75}. This is impossible as 49 belongs 

neither to A nor B. If c +d = 21 we have B = Al - {9} so 

a + b • 25 giving A'" {9,2s,41, ..• } which is impossible as 41 is 

prime. 

53. For b > 0 , prove that 

by first showing that 

r d;XdX · r[r·~X"nxdx 1 du 
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Solution: We begin by showing that for b > 0 

(53.1) r . Sln x dx _ 
x 

sin x 
x 

we have for y > 0 

rb sin
x 

x dx _ rb ~ - J
O 

(l ~ e -xy) sin x dx 
x 

:i max 
OS;x:ib 

,., M(b) 

• M(b) 

sin x dx 
x 

sin x 
x 

e-xy Ib 
-y 0 

te-XYdX 

-by 
(1 - e ) 

y 

Letting y ..... "" we obtain (53.1). 

Next we have 

sin x dx 
x 

Letting y ..... "" we obtain 

. Sln x -ux . t · r[t 1 x dx = e Sln x dx du 

107 

dx • 
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=[ -bu ) (1 - e (u sin b + cos b) du 

1 + u2 

'IT .. - -2 [ 
-bu 

e (u sin b + cos b) du • 

o 1 + u2 

Hence we have 

Sln x dx _ 2! I
b . 

o x 2 

[

<Xl 

-bu 
,. e (u sin b + cos b) du 

1 +} 

("" -bu Ii:+u'2 
~ J. e 1+u2 du 

o 

as required. 

54, Let a1,a2,···,a44 be 44 natural numbers such that 

o < a
1 < a2 < ••• < a44 ~ 125 . 

Prove that at least one of the 43 differences d . .. aj +1 - a. 
J J 

occurs at least 10 times. 

Solution: We have 

4} 43 
L d." I (a'+1- a .) = a44-a1 ::; 125-1" 124 . 

j=l J j=l J J 
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If each difference dj 

43 
L d. 

j=l J 

109 

occurs at most 9 times then 

~ 9(1+2+3+4) + 7(5) ~ 125. 

This is clearly a contradiction so at least one difference must occur 

at least 10 times. 

55. Show that 

p such that p" 

for every natural number n there exists a prime 
2 2 a + b • where a and b are natural numbers 

both greater than n. (You may appeal to the following two theorems: 

(A) 

a and 

If P lS a prime of the form 4t+l 
2 2 

b such that p" a + b 

then there exist integers 

(B) If rand s are natural numbers such that GCD(r,s)" 1 • 

there exist infinitely many primes of the form rk+s • where k is 

a natural number.) 

Solution: Let n be a natural number. By (B) there exists a prime 

q > n of the form 4t+3. Set 

222 
m '" 2 (l +q)(2 +q) ... (n +q) • 

Clearly we have 

GCD(m,q) • 1 • 

Hence, by (B), there exists a natural number k such that the number 

2 P .. m k - q 

is a prime. Clearly p is of the form 4u+l 

exist natural numbers a and b such that 

Hence, by (A), there 

Without loss of generality we may assume that a < b. Suppose now 

that a ~ n. Then we have 
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. 2 2 2k 2 o = p - a "m - q - a 

2 - (a +q) 

2 [2 n
2 2] " (a +q) 4(a +q) IT (r +q) - 1 • 

r=l 
r;:a 

where the factors on the right hand side of the equality are coprime. 

Consequently they must be squares, but this is impossible as the 

second factor is of the form 4v-l Thus we must have b > a > n 

56, Let ""l'a2·····an be n (~l) integers such that 

(i) o < al < a2 < ••• < an • 

(ii) all the differences a. -
1 

a. 
J 

(1 ~ j < i :iI n) 

(iii) a. :: a (mod b) (1 ~ i ~ n) • where a and 
1 

integers such that 1 ~ a ~ b-l • 

Prove that 

n 
L a ~ r r=l 

b 3 b 
6"n + (a - 6') n 

are distinct. 

b are positive 

Solution: Let r be an integer such that 2 ~ r ~ n. For 

1 ~ j < i ~ r there are (~) = ~ r (r-l) distinct diff-

erences a. - a .• and these are all divisible by b Thus the lar-
1 J 

gest difference among these, namely ar - al ' must be at least 

~r(r-l) • that is 

2 ::; r ::; n , 

and so 



SOLUTIONS (56-57) 111 

As a1 
- a (mod b) there is an integer t such that a

1 
,. a + bt • 

If t ~ -1 then a .. a 
1 

+ bt ~ a - b ~ -1 , which is impossible 

a l > 0 Hence we have t ;;; 0 and so a l ~ a , giving 

(56.1) b 2 S r S n a ;;; a + '2 r (r-l) , r 

The inequality (56.1) clearly holds for r. 1 

so that 

n 
I a ~ an + 

r r=l 

b n 
'2 L dr-I) 

r"'l 

n 
I a ~ 

r"'l r 

b 3 b 
-n + (a - -)n 6 6 

Thus we have 

57. Let A .. (a .. ) be the nXn matrix given by n 1J 

2 cos t , if i '" j , 
a .. ,. 1 if Ii - jl .. 1 

1J 
, , 

0 , otherwise , 

where -~ < t < ~. Evaluate 0 • det A 
n n 

as 

Solution: Expanding 0 = det A by the first row, we obtain the 
n n 

recurrence relation 

(57.1 ) D = 2 cos t D 1 - D n ~ 2 n n- n-2' 

We now consider two cases according as t ~ 0 or t .. O. For 

t ~ 0 the values of Dl and D2 may be obtained by direct calcula­

tion as follows: 

and 

sin 2t 
01 .. 2 cos t.. sin t ' 
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D2 
2 

" 4 cos t - 1 

4 sin t cos 2 - sin t t = sin t 

2 sin t cos2 t + sin t (2 cos 
2 

- 1) t .. 
sin t 

sin 2t cos t + sin t cos 2t 
" sin t 

sin (2t + t) 
" • Sln t 

sin 3t 
" sin t 

These values suggest that 

(57.2) ~s.;;;.;i n,,-:-,-(;;,;.n+;..;:l;.:.).;;;.t D .. -
n sin t ' n " 1,2,3, ... 

In order to prove (57.2), assume that (57.2) holds for n" 1,2, ••• ,k-1, 

Then we have, by the recurrence relation (57.1), 

Dk " 2 cos t Dk_1 - Dk_2 

2 t sin kt sin (k-l) t .. cos . - ..;...;;.........r.---'''-'-
Slnt Slnt 

2sinktcost - sin (k-1}t • ~---'~~~s~i~n-t~~~~~ 

" ~s 1::..:;' n;...,C""kc-+ l:;.,:)...:.t 
sin t 

Thus (57.2) holds for all n by the principle of mathematical induc­

tion. 

For t" 0 we have 

which suggests that D "n + 1, n ~ 1 
n 

by mathematical induction. We note that 

This can also be proved 
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lun' sin (n+l)t 1 
OJ n + • sin t t-+O 

Remark: The auxiliary equation for the difference equation (57.1) is 

2 x - 2(cost)J!:+1- 0 , 

which has the roots 

giving 

D '" n 

X" {
exp (it) , exp (-it) , 

1 (repeated) , 

fA1exp(nit) + B1exp(-nit) , 

1 AZ + Bzn • 

t ;II 0 , 

t .. 0 , 

t ;II 0 , 

t .. 0 • 

for complex constants Al and B1 and real constants AZ and BZ ' 

which can be determined from the initial values D1 '" Z cos t • 

D2 '" 4cos 2t - 1 , using DeMoivre's theorem in the case t;ll O. One 

finds 

Al .. ~ (1 - i cot t) , B1 .. ; (1 + i cot t) , 

AZ '" B2 .. 1 • 

58, Let a and b be fixed positive integers. Find the general 

solution of the recurrence relation 

(58.0) n • O,l,Z, ... • 

where Xo = 0 . 

Solution: From (58.0) we have 

bZ + 4axn+l .. bZ + 4a(xn + a + "Z+4aXn) 

• 4aZ + 4a~Z+4ax + (b2+4ax ) 
n n 
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so that 

(58.1) f2+4ax 2a + L 2+4axn • Vb n+l .. Vb 

Hence, by (58.0) and (58.1), we have 

(58.2) xn .. xn+1 + a - .jb2+4aXn+l 

Replacing n by n-l in (58.2) , we get 

(58.3) xn- 1 = xn + a - ~2+4aXn • 

Adding (58.0) and (58.3) we obtain 

and hence 

(58.4) x +1 - 2x + xI" 2a . n n n-

Setting y ' .. x - x n-l n n-l in (58.4), we obtain 

(58.5) y - Y 1" 2a • n n-

Adding (58.5) for n" 1,2,3, ... yields (as 

y = 2an + (a + b) , 
n 

and so x = an2 + bn • 
n 

y .. x - x .. a + b) 010 

59. Let a be a fixed real number satisfying 0 < a < rr , and set 

(59.0) I r 1 
- r cos u du . .. 
2r cos u + r2 r 1 --a 

Prove that 

II ' lim I , lim I 
r-+l+ r r -+ 1- r 
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all exist and are distinct. 

Solution: We begin by calculating II' We have 

1 [
a 1 - cos u d f.a 1 d 

1" 2 - 2 cos u u· "2 U" 
a -a 

(59.1) a , 

where we have taken the value of the integrand to be ~ when u" O. 

Now, for r > 0 and r ~ 1 , we have 

2 
1 - 2r cos u + r > 2r - 2r cos u .. 2r(1 - cos u) ~ 0 , 

so that the integrand of the integral in (59.0) is continuous on [-a,a]. 

We have 

which gives 

(59.2) 

where 

(59.3) 

Let t .. 

fa {l (l - r2) } 
I r = La "2 + ":::'2""'(l=---~2 r-co":s-'-u-+-r"'"2 "'") d u 

u tan -2 

2} f.a du 
- r 1 - 2r cos u + r 2 ' 

I .. a + 
r 

-a 

J ,. fa -:----:_..;;.du"'-__ .,.-
r 1 - 2r cos u + r2 -a 

with -a :r; u ::; a so that 

1 
2 

2 - t du cos u '" = 
1 + t 2 

1 + t 
2 dt . 

Using the above transformation in (59.3), we obtain 
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(59.4) 
2 

J = --=--=-
r (l+r) 2 

dt 
2 ' 

t2 + (l-r) 
t l+r 

1 

where 

tl • tan a/2 • 

Evaluating the standard integral in (59.4), we deduce that 

(59.5) J 4 -1 ( l+r = tan-
r 11-r21 l-r 

tan a/2) 

From (59.2) and (59.5) we get 

-1 ( l+r I 1 tan l-r tana/2
J 

Hence for r > 1 we have 

I r " a - 2 tan-l (~~il tana12) 

and for 0 < r < 1 we have 

Ir • a + 2tan -1 [n~l tan a12] 

Taking limits we obtain 

Thus the quantities 

distinct. 

lim I = a - 2 • ~ '" a - 7T , 
r .... 1+ r 

lim I =a+2 • .1I=a+7T 
1- r 2 r .... 

II ' lim I ,lim I all exist and are all 
r .... 1+ r r"" C r 
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50. Let I denote the class of all isosceles triangles. For 

I::. e: I ,let hI::. denote the length of each of the two equal altitudes 

of I::. and kl::. the length of the third altitude. Prove that there 

does not exist a function f of hI::. such that 

for all I::. e: I . 

Solution: Let h be a fixed positive real number. For t > 1 let 

(60.1) 
h(t+~)2 h 1 a .. b .. - (t +-) 1 , 2 t 4(t--) t 

As b < 2a there exists an isosceles triangle I::.(t) with vertices 

A,B,C such that IABI" IAcl .. a , IBcl .. b. It will follow that 

the choice (60.1) is such that 

h[ t + ~ 
hl::.(t) .. h, kl::.(t) = 2" --1 

t-'t 

Let P, Q • R be the feet of the perpendiculars from A to BC , 

B to CA, C to AB respectively. Then we have 

h2 .. BQ2 
t:.( t) 

.. CR2 • a2 sin2 A .. a2 (1 - cos 2 A) 

Applying the cosine law to I::. (t) we obtain 

cos A • 2a2 - b2 

2a2 
Hence it follows that 

(60.2) ( [2a2 - b2) 2 ) b2 
(4a2 -b2 ). h1(t) '" a

2
l - 2a2 =-

4a2 

Next, from (60.1), we see that 

2a-b 
-= 

h 
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so that 

and thus from (60.2) we have 

Applying Pythagoras' theorem in triangle ASP, we have 

so that 

1 2 
2 2 b2 h2 (t + t) 

kA(t) = AP = a2 
- - --

u 71 - 4 (t _ 1:.)2 ' 
t 

h 
" -2 1 

t -­t 

Finally, suppose there exists a function f = f(hb,.) such that 

for all b,. e: I. Then, in particular. one sees that 

which implies 

that is 

(60.3) 

:i f(h) , 

2 f(h) 
h 

, t > 1 • 

t > 1 , 

t > 1 • 

As the left side of (60.3) tends to infinity as t++'" while the 

right side is fixed, we have obtained a contradiction, and therefore 

no such function f can exist. 
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61 Find the minimum value of the express10n • 

( 
2 k

2
) ( k(l+sin t») . ) (61.0) x +2 - 2 (l+cost)x + x + (3+2cost+2s111t , 

x 

for x > 0 and 

number. 

o ~ t ~ 2n , where k > l + /2 1S a fixed real 
2 

Solution: The expression given in (61.0) can be written in the form 

{x - (1+cos t»)2 + (k - (l+sin t))2 , 
x 

k which is the square of the distance between the point (x 'x) (x > 0) 

on the rectangular hyperbola xy ~ k in the first quadrant, and the 

point (l+cos t , 1+sin t) (0:;:; t ~ 2n) on the circle centre 0,1) 
with radius 1. The condition k > ~ + /2 ensures that the two 

curves are non-intersecting. Clearly the minimum distance between 

these two curves occurs for the point (Ik, Ik) on the hyperbola and 

the point 
1 1 

(1 + 72 ' 1 + /2) on the circle. Hence the required mini-

mum 1S 

62. Let E > O. Around every point in the xy-plane with integral 

co-ordinates draw a circle of radius E. Prove that every straight 

line through the origin must intersect an infinity of these circles. 

Solution: Let L be a line through the origin with slope b If 

b is rational, say b = ~ , where k and t are integers 

satisfying t ~ land (k,t) = 1 , then L passes through the 

centres of the infinity of circles all of radius E, centred at 

lattice points (tt, kt) , where t is an integer. 
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If b is irrational, then by Hurwitz's theorem there are infini­

tely many pairs of integers (m,n) with n ¢ 0 and GCD(m,n) = 1 

for which 

Choosing only those pairs (m,n) for which 

1 
n >--rr­

EVb~+l 

we see that there are infinitely many palrs (m,n) for which 

that is, for which 

(62.1) 

m 
- - b n 

<45i 
n 

m - bn 

~ 
< e: 

Since the left side of (62.1) is the distance between the line L 

and the point (m,n), L intersects the infinity of circles all with 

radius e: centred at these lattice points. 

Second solution (due to L. Smith): Let L be a line through the 

origin with slope b . The case 

when b is rational is treated as in the first solution. 

When b is irrational, we construct an infinite sequence of 

lattice points whose distances from L are less than any given 

positive e: 

Pick any lattice point (xl' Yl) with dl = IYl - bx11 < 1 . 

Clearly dl is positive as b is irrational. Set 

so that 
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(62.2) 

Let (x2 'Y2) be the lattice point given by 

f',x, · a,Y, -l) • if Yl > bXI ' 
(x2 ' Y 2) .. 

(a1xl ' a lYI + 1) , if Yl < bX 1 ' 

and set d2 " IY2 - bx21 . Clearly, as d2 ~ 0 , we may set 

(62.3) 

It is easy to see that d2 .. 1 - aId 1 ' so that by (62.2) we have 

(62.4) 1 

Thus, from (62.3) and (62.4), we obtain 

Continuing this process we obtain an infinite sequence of lattice 

points {(xk ' Yk): k = 1,2, •.. } , whose vertical distances dk 
from L satisfy 

where ak " [d~] k ~ 1. Furthermore {ak : k .. 1,2, ..• } 16 a 

strictly increasing sequence of positive integers. 

Finally choose a positive integer N such that 

for all n ~ N + 1 , we have 

d < 1 
n a 1 + n-

1 
< -

1 aN 

l<e:. 
N 

and the lattice points (x ,y) (n > N) are as required. 
n n 

Then, 
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63. Let n be a positive integer. For k ~ 0,1,2, .•• ,2n-2 

define 

(63.0) 

Prove that Ik ~ In-I' k· O,l,2, ••• ,2n-2 • 

Solution: For k = O,l,2, ••• ,2n-2, (63.0) can be written 

Applying the transformation 

so that Ik = 12n- k- 2 . 

1 x • - we obtain y , 

lib 
2n-k-2 y ... dy 

In+yn+l 
l/a 

, 

Now, using the arithmetic mean-geometric mean inequality, we have 

for x ~ 0 , 

(63.1) 
k 2n-k-2 

.:;x:....-+:....,:x:.-__" n-l 
2 .. x , k • 0,1,2, •.. ,2n-2 

As x
2n

+x
n+l > 0 , we may divide (63.1) by x2n+xn+l , and integrate 

the resulting inequality to obtain 

from which the desired inequality follows. 
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64. Let D be the region in Euclidean n-space consisting of all 

n-tuples (x1,x2' ••• ,xn) satisfying 

, , ••• , x G1; 0 
n 

, 

Evaluate the multiple integral 

(64.0) fJ .. · f 
D 

where k1, ••• ,kn+1 are positive integers. 

Solution (due to L. Smith): We begin by considering 

where rand s are positive integers and a > 0 . 

Integrating I(r,s) by parts, we obtain 

I(r, s) = r~1 I(r+l ,s-1) , 

so that 

I(r, s) s s-1 --.-r+l r+2 
1 

... r+s I(r+s ,0) , 

that is 

r! s! 
I (r , s) • (r+s) I I (r+s , 0) • 

k 
As I(k,O) = :+1 • for k G1; 1 , we obtain 

(64.1 ) I ., r+s+l 
( ) r s. a 

I r,s .. (r+s+l)! 

Now, applying (64.1) successively, we obtain 
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1 

1 

x -0 n-l 

x "0 x -0 1 2 

1 
k 1! k ! k +1! n- n n 

'" ~;;;""':::-:-:-~-"-'-7-:;~ 
(k l+k +k +1+2)! n- n n 

.. 

65. Evaluate the limit 

SOLUTIONS (64-65) 

1-X1-k··-Xn- 1 k 

x n «1-x
1
- ... -x l)-x) n+l 

n n- n 

x =0 
n 

1-x -" .. -x 
1 k n-2 k +k +1 

x .. 0 
n-1 

... 

n-1( ) n n+l x 1 1-x1-···-x 1 n- n-

1-x1-···-x 3 k l+k + n- n- n 
kn_2 k +2 

xn- 2 (1-x1- ... -xn_2) n+1 

x -0 n-2 

L 1· 1 t 2!\ 
n [~ .. 1m - t.. 

n+ co n kal IK 

i Solution: We show that L":r - 3. For any real number r we have 

1
0 if 

[2r) - 2[rl" l' 
if 

Hence we obtain 

[2rJ 

[2r 1 

is even, 

is odd . 
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n 

· L 1 
k-1 

[2~1 odd 

n 
L 1. 

fen) 

" L 
s=l k=l 

[2~1.2S+1 

where fen) = [[2TnJ - IJ . Next we see that [2*] • 2s + 1 if 

and only if 

4n < k:li 4n 
(2s+2)2 (2s+1)2 

and thus 

[~1=2S+l 
4n " -;.:;.:.-."'" 

(2s+1) 2 
4n + E 

(2s+2)2 l' 

where IEll < 1 • Hence we have 

1 f (n)( 1 1) 
- A(n) = 4 l 2 - 2 
n s-l (2s+1) (2s+2) 

where 

I E I :Ii f (n) • I E I < f (n) :Ii ~ " ..!.. 
2 n 1 n .n Iii 

Letting n -+00 gives 
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'" [ . 1 
L = 4 L 2 -

s=1 (2s+1) 

that lS, 

. . . and ••• 

66. Let p and q be distinct primes. Let S be the sequence 

consisting of the members of the set 

{ m n } p q : m,n = 0,1,2, ... 

arranged in increasing order. For any pair (a,b) of non-negative 

integers, give an explicit expression involving a, b, p and q for 
a b the position of p q in the sequence S . 

Solution: Without 

Clearly 

loss of generality we may suppose that p < q . 
a b th p q lS the n term of the sequence, where 

n lS the number of pairs of integers (r,s) such that 

Set 

so that k 
p 

Then we have 

r s a b p q ~ p q r ~ 0 , s ~ 0 . 

lS the largest power of p 

k 
n = ! 1 

r, s=o 
r s'" a b 

p q .. p q 

less than or equal to 
a b 

P q • 
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k .. 1 1 
r.s .. 0 

rbtp+sbtq ~a.tnp+bbtq 

" J) [ a bt p + bJ~ q - r.tn p] + 1) 

.. ~ (b + 
rcO 

[ 
(a-r) .tn p] 

ln q 

so that the position of a b 
p q • 1S 

k 
(k+l) (b+l) + 1 

r-O 
[
(a-r) bt p] 

biq 

127 

67. Let p denote an odd prime and let Z denote the finite 
p 

field consisting of th~ p elements 0,1.2 •••• ,p-l. For a an 

element of Z • determine the number N(a) of 2 x 2 matrices X. 
P 

with entries from Z • such that 
p 

(67.0) 2 [a 0] X .. A, where A'" 0 a • 

Solution: It is convenient to introduce the notation 

1
1 • k(a)· O. 
";1. 

We will show that 

(67.1) 

if a" b2 for some non-zero element 
if a" 0 , 
otherwise . 

2 p +p+2 • 
2 

p , 
2 

p - p • 

if k(a)" 1 , 

if k(a) = 0 , 

if k(a)" -1 . 

b of Z p 
, 
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We note that if k(a) = 1 , so that there is a non-zero element b 

of Z such that a = b2 , then the only other solution of a = x 2 
p 

is x = -b . 

Let X = , where 
(

X
z 

wy] x,Y,z and ware elements of 

matrix such that X2 = A. Then we have 

(67.2) 

(67.3) 

2 2 
x + yz = yz + w = a , 

(x + w)y = (x + w)z = ° . 

Z ,be a 
p 

We treat two cases according as (i) x + w = ° or (ii) x + w ~ ° . 
In case (i) the equations (67.2) and (67.3) become 

(67.4) 2 
x + yz = a 

2 If k(a) = 1 , say a = b , b ~ ° , then all the solutions of (67.4) 

are given by 

-1 2 2 (x,y,z) = (±b,O,O) , (±b,t,O) , (±b,O,t) ,(u,t,t (b -u » , 

where t denotes a non-zero element of Z 
P 

Thus there ment of Z 
p 

+ (p-2) (p-l) 

not equal 
2 

= p + P 

to ±b. 

solutions (x,y ,z ,w) 

and u denotes an ele­

are 2 + 2(p-l) + 2(p-l) 

in this case. 

If k(a) = 0 , so a = 0 , then all the solutions of (67.4) are 

given by 

2 -1 (x,y,z) = (0,0,0) , (O,t,O) , (O,O,t) , (t,u,-t u ) , 

where t and u denote non-zero elements 

1 + (p-1) + (p-1) + (p_1)2 = p2 solutions 

of Z Thus there are 
p 

(x,y,z,w) in this case. 

If k(a) = -1 , so that a is not a square in 

solutions of (67.4) are given by 

Z ,then all 
p 

where t and 
2 (p-l) + (p-1) 

-1 (x,y,z) = (O,t,at ) 2 -1 (t,u,(a-t)u ) , 

u are non-zero elements of Z 
2 l' ( )p = p - p so utlons x,y,z,w 

Thus there are 

in this case. 
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In case (ii) the equations (67.2) and (67.3) become 

2 x = w ~ 0 ,x = a , y = z = 0 , 

which clearly has two solutions if k(a)· I , and no solutions if 

k(a) = 0 or -1 . 

Hence the total number of solutions is given by (67.1). 

68. Let n be a non-negative integer and let f(x) be the 

unique differentiable function defined for all real x by 

(68.0) )2n+l (f(x) + f(x) - x = 0 • 

Evaluate the integral 

for x ~ 0 . 

Solution: The function y - f(x) defined by (68.0) passes through 

the origin and has a positive derivative for all x. 

Hence, there exists an inverse function f-l(x) , defined for all x, 

and such that f-1(0) = O. Clearly we have f-l(x). x2n+l + x 

When x > 0 , the graph of f(x) lies in the first quadrant, as 

f(O) - 0 and f is increasing. Thus for all x ~ 0 we have 

rx rf(x) .b f(t) dt +.b f-l(t) dt • x f(x) • 

Now 

rf(x) 
=.b (t

2n
+

1 
+ t) dt = (f(x»)2n+2 (f(x»)2 

2n+2 + 2 , 

so that 
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rx )2n+2 ( 2 
J
O 

f(t) dt = x f(x) - (f(~~+2 _ f(~» 

= 2n+ 1 f ( ) n () ) 2 
2n+2 x x - 2n+2 f x . 

69. Let fen) denote the number of zeros in the usual decimal 

representation of the positive integer n , so that for example, 

f(1009) = 2. For a > 0 and N a positive integer, evaluate the 

limit 

where 

L = lim 
N+oo 

i~ SeN) 
in N 

N 
SeN) '" ~ af(k) 

k=l 

Solution: Let t be a non-negative integer. The integers between 

lOt and 10i+l_1 have i+1 digits of which the first is 

necessarily non-zero. The number of these integers with i (0:;; i :;; t) 

f h · d' . 1 •. (i) 9i - i+l o t elr IgltS equa to zero IS i • 

Choose m to be the unique non-negative integer such that 

so that 

Then we have 

10m - 1 :;; N < 10m+1 - 1 , 

m = [in (N+l)] 
In 10 

m 
10.-1 f(k) 

I a 
k=l 

f(k)=i 
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m-l . lOm-1 
.. ! a

l ! 1 
i=O k-l 

f(k)-i 

m-l . m-1 10l+1_l 
. ! a

l ! i 1. 
i-O laO k-10l 

f(k)-i 

Appealing to the first remark we obtain 

that is 

where 9 
c -- .. a+8 

As 

we obtain 

.. m!1 cf+l (1 + a)l 
laO 9 

m-1 l 
.. 9 ! (a + 9) • 

l-o 

m 111+1 c(a+9) ~ S(N)+c < c(a+9) 

Taking logarithms and dividing by m, we get 



132 

In c _ lIt(a+9) 
m 

SOLUTIONS (70-71) 

1I .!.lIt(S(N)+c) < III c + (m+l) lll(a+9) 
m m m 

Letting N ... ", , so that m +<» , we deduce that 

Hence we have 

lim 

lim 
N+ex> 

.!. lit S (N) 

.!.tn(S(N)+C) .. In(a+9) • 
m 

N..-OO m 

and so 

.. lim ! tn(S(N)+c) - ! tn(l + S(~)} 
N+"" 

.. lIt(a+9) , 

lim 
N .... "" 

lit SeN) In(a+9) 
biN =bilO 

70. Let n ~ 2 be an integer and let k be an integer with 

2 1I k ~ n. Evaluate 

M • max l( min (a·+l-a.») 
S l~i~k-l 1 1 

• 

where S runs over all selections S .. {a l ,a2 •.•. ,a
k
} from 

{1,2, .•.• n} such that al < a2 < ••• < a
k 

• 
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Solution (due to J.F. Semple and L. Smith): 

We show that M· [
n-l] 
k-1J 

• We consider the selection S* 

given by 

a. • (i-l)[~=n + 1 1 :ii i :ii k , 1 , 

which has 

ai+1 - a. * [!!:l] 1 :ii. • :ii k-l . 1 1 k-1 , 

Thus for S* we have 

min (a. 
1:iii:ilk-1 1+1 

- a.) 1 = [n-~j k-1 
, 

so that M ~ [~=~J • In order to prove equality, we suppose that 

there is a selection S with 

min (a. 
l:iii:iik-l 1+1 

Then we have 

which 

which 

n-1 ~ a. -a1 = kt (a. -a.) ~ (k-l) ( [n-1J +1) > n-l , 
K • 1 1+1 1 k-1 

1= 

is impossible. Hence. any selection has min (a.+l-a.) < f.nk=ll]+l. 
. 1:iii:iik-1 1 1 L J 

proves the requ1red result. 

71. Let az2 + bz + c be a polynomial with complex coefficients 

such that a and b are non-zero. Prove that the zeros of this 

polynomial lie in the region 

(71.0) Izl :iI b + c 
a b 
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Solution: Note that 

11b2-4ac\ : Ibl ~ 

so that 

:i \bl/l + 1~~cl 

:i \ b \ (1 + ~~c J 

.. Ibl + 2~C , 

_ ~ + 162 
-4ac I < b + ~ + =- .. b + =-\ 

2a - 2a \ - 2a 2a b a b' 

and hence the solutions of az2 + bz + c = 0 satisfy (71.0). 

Second solution (due to L. Smith): Let w (~-l) be a complex number. 

The inequality 

(]1.l) \w+ll + ,til ~ 1 • 

is easily established, for if 1W+11 ~ 1 then (71.1) clearly holds, 

while if 0 < 1W+11 < 1 then 

Let zl,z2 

IZil :i IZ21 

\W+l\ + ,t!1 > \w+1I + \wl > 1 • 

be the roots of the given quadratic chosen so that 

• As a and b are non-zero, z2 ~ 0 

in (71.1) we obtain 

The inequality (71.0) follows as zl + z2 b .. --
a 

and 
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72. Determine a mon1C polynomial f(x) with integral coefficients 

such that f(x):: 0 (mod p) is solvable for every prime p but 

f(x) = 0 is not solvable with x an integer. 

Solution: If P .. 2 

(mod p) 

x2 + 2 - 0 (mod p) 
2 

0 (mod p) x - 2 -

or p :: 1 (mod 4) the congruence 

is solvable. If p - 3 (mod 8) 

is solvable. If p - 7 (mod 8) 
. solvable. Set 1S 

222 f(x) - (x +l)(x +2) (x -2) 

the 

the 

x2 + 1 :: 0 

congruence 

congruence 

Clearly f(x) is a monic polynomial with integral coefficients such 

that f(x) = 0 is not solvable with x an integer. 

73. Let n be a fixed positive integer. Determine 

M '" max 
O:l~:ll 

k"l,2, ... ,n 

L 1 x. -x. 1 . 
1""< '< 1 J .1 J-n 

Solution: Without loss of generality we may assume that 

so that 

S= L Ix.-x·1 
l:li<j:ln 1 J 

.. L (x.-x.). 
l:li<j:ln J 1 

The sum S has n(n-l)/2 terms. For each k. 1 :I k :I n, xk 
appears in k-l terms in the left position and n-k times in the 

right position. Hence we have 

As 

n n 
S = L x «k-l) - (n-k») 

k=l k 
= L x (2k-n-l) 

k=l k 

2k-n-l < 0 , for k < n+l, we have 
2 
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s ~ L xk(2k-n-l) ~ L (2k-n-l) 
n;l~k~n n;l~k~n 

Thus, for n even, we have 

n 
S ~ L (2k-n-l) .. 1+3+5+ •.. +(n-1) .. n2/4 , 

k" .:!.+1 
2 

and for n odd 

n 2 
S ~ L (2k-n-1) .. 2+4+6+ ... +(n-l) .. (n -1)/4 

k" n+1 
2 

Thus we have 
2 

S ~ [n /4] • 

For n even, the choice 

.. x • 0 n x = ••• .. x .. 1 
n 

2" 
gives 

2 S .. n /4 

E.+l 
2 

and for n odd, the choice 

gives 

This shows that 

74. Let 

sequences of 

{x. : 
1 

real 

= ••• , xn+l" 
2 

2 
S .. (n -1)/4 

i .. 1,2, ... ,n} and {y.: 
1 

numbers with 

i .. 

... 

l,2, ••• ,n} be two 
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How mJ,lst 

(74.0) 

yl •..•• yn be rearranged so that the sum 

n 2 i (x. - y.) 
. 1 1 1 
1" 

is as small as possible? 

Solution: Suppose the ith 

y .• l:;'li<j:;'l 
J 

term y. is smaller than the jth term 
1 

n. Interchanging y. and y. produces 
1 J 

a new sequence 

with 

1·£ k ... · . .. 1 or J • 

z -k 
if k- i • 
1'£ k . y., '" J • 

1 

Moreover we have 

n 2 n 2 i (x. -z) .. L (x. -y) + 
k=l lI'. k k-l lI'. k 

2 2 2 2 (x.-y.) + (x.-y.) - (x.-y.) - (x.-y.) • 
1J J1 11 JJ 

where 

2 2 2 2 (x.-y.) +(x.-y.) ) - (x.-y.) +(x.-y.) ) 
1J J1 11 JJ 

.. (y.-y.)(2x.-y.-y.) + (y.-y.)(2x.-y.-y.) 
1J 11J J1 J1J 

.. 2(y.-y.)(x.-x.) 
1 J 1 J 

s; 0 • 

so that 
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Hence every such transposition decreases the size of the sum (74.0), 

and the smallest sum is obtained when the y. are arranged in 
1 

decreasing order. 

75. Let p be an odd prime and let Z denote the finite field 
p 

consisting of O,l,2, •.• ,p-l • Let g be a given function on Z 
p 

with values in Z • Determine all functions f on Z with values 
p P 

satisfy in Z 
P 

, which the functional equation 

(75.0) 

for all x in Z 
P 

f(x) + f(x+l) = g(x) 

Solution: Replacing x by x+k (k. 0,1,2, ••• ,p-l) in (75.0), we 

obtain 

(75.1) f(x+k) + f(x+k+l) '" g(x+k) • 

Hence, using (75.1), we have 

p-l k 
L (-1) g(x+k) 

k-O 

p-l 
'" L (-l)k(f(x+k) + f(x+k+l») 

k-O 

p-l 
'" L (-l)kf(x+k) - (-l)k+lf(x+k+l») 

k=O 

'" f(x) - (-l)Pf(x+p) 

'" 2f (x) , 

so that there is only one such function, namely, 

P-l -1' k 
f(x) '" 2 L (-1) g(x+k) 

k-O 
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76. 

06.0) 

Evaluate the double integral 

I • ili1 
dxdy 

1 - xy o 

Solution: Set S· {(x,y) I 0 ~ x ~ 1 , 0 ~ y ~ 1 } 

For 0 < e < 1 set 

so that 

R1(e) • {(x,y) 0 ~ x ~ l-e , 0 ~ y ~ 1 } , 

R2(e) = {(x,y) 1-e ~ x ~ 1 , 0 ~ y ~ l-e } , 

R(e) = R1 (e:) U R2 (e) , 

R(e) = S - {(x,y) I 1-e ~ x ~ 1 , 1-e ~ y ~ 1 } . 

Then, for j. 1,2 , we set 

Ij(e) = II 1d~d~. 
R

j 
(e) 

139 

The function 1 1 is continuous on the square S except for a 
-xy 

discontinuity at the corner (x,y) = (1,1) , so that (76.0) becomes 

For n a positive integer and for j. 1,2 , we set 

= If· (l + xy + x
2i + ... 

R. (e) 
J 

II 
.n n 

K. (e, n) • x y dx dy 
J 1 - xy 

R. (e) 
J 

n-1 n-1 + x y ) dx dy , 



14() 

2 2 
As 1 + xy + x y + 

n n n-l n-l x y 
... +x y +1 - xy 

1 n n n n - x y + x y .. 
1 - xy 1 - xy 

1 .. 
1 - xy • 

we have, for j .. 1,2 ; 0 < € < 1 ; n , 1 

(76.1) J.(€,n) + K.(€,n) .. I.(€) 
J J J 

SOLUTIONS (76) 

Next, as the largest value of xy on both R1(€) and R2(€) is 

l-€ , we have 

so that 

n n x y 
1 - xy 

Hence for 0 < € < 1 we have 

, 

j .. 1 , 

lim K. (€, n) .. 0 • j.. 1 , 2 
n -+- co J 

Next, for j .. 1,2 , we have 

n-l ff . m m .. L x y dx dy , 
maO R. (d 

J 
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so that 

giving 

n-l 
· L 

m-O 

n-l 
.. L 

m-O 

O_e)m+l 

m+1 

co 

lim J1(e,n). L 
n .... "" maO 

1 .-
m+1 

, 

and similarly 

lim 

Letting n+a> in (76.1), we obtain 

"" O_e)m+l 
I

1
(e:) .. L 

(m+1)2 
, 

pO 

"" (l_e)m+1 "" Cl_e)2m+2 
1

2
(e) • L - L 

m"O (m+1)2 m-O (m+l)2 

so that 
a> m+ 1 "" 2m+2 

I (e:) + I (e) .. 2 L (1-e) - L (1-e) • 
1 2 m-O (m+1)2 m-O (m+1)2 

Hence, by Abel's limit theorem, we have 

dxdy • lim (I (e) + I (e») 
1-xy e+o+ 1 2 

a> co 

"2L 1 _\" 1 
2 l. 2 m..o (m+ 1) mOlO (m+ 1) 

141 

, 
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00 

= ~ 
1 

maO 

that is 
2 

I = 1T /6 • 

77. Let a and b be integers and m an integer > 1 . 

Evaluate 

[:] + ra:bJ + [~ + ... + t(m-1~a + b] 

Solution: Our starting point is the identity 

(77.1) 
k-1 
~ [~+ eJ .. [ekJ • 

x=O 

where k is any positive integer and e is any real number. As 

{y} .. Y - [y] , for any real y, (77.1) becomes 

(77 .2) k-1 { } ~ ! + e = l (k-l) + {ek} 
x=O k 2 

For fixed k and e, {~ + e} is periodic in x with period k. 

If c is chosen to be an integer such that GCD(c,k)" 1 , the map­

ping x + cx is a bij ection on a complete residue system modulo k. 

Applying this bijection to (77.2), we obtain 

(77.3) k-1 { } L ~ + e .. l (k-1) + {ek} 
x-o k 2 

We now choose c - a/GCD(a,m) and k = m/CCD(a,m) , so that 

CCD(c,k) .. 1 ,and e" b/m. Then (77.3) becomes (keeping k in 

place of m/CCD(a,m) where convenient) 
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. ax+b_l m 1+ b k-l { } ( ) { } 
xlo -m- - "2 GCD(a,m) - GCD(a,m)' 

and so 

m~l {aX;b} • GCD(afm)-l k~l {a(y+k:) + b} 

x-O z ... O y-O 

.. GCD(afm)-l k~l {aY;b} 

z"'O yaO 

.. ~ (m - GCD(a,m» + GCD(a,m){GCD(ba,m)} 

Finally, we have 

m-lr. J L tX;b 
X .. O 

that is 

m~ 1 
taX+

m 
b] 1 { b } I. .. I(am-a-m+GCD(a,m» + GCD(a,m) GCD(a,m) . 

x-O 

Remarks: The identity (77.1) is given as a problem (with hints) on 

page 40 in Number Theory by J. Hunter, Oliver and Boyd, 1964. 

78. Let 

Prove that 

Solution: 

aI' .•.• an be n (>1) distinct real numbers. 

2 2 M" min (a. 2 S .. a + ••• + a 
n ' - a.) 1 l:!1i <j:!ln l J 

.§. ~ n( n-1) (n+l) 
M 12 

Relabeling the a's, so that a
l 

< a2 < •.. 

preserves the values of 5 and M. 

< a 
n 

Set 
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min 2 2 
where j is a fixed subscript. Then, we have Let a. ,. a. 

1 J I~i~n 

Next, min (a'+1 1~i~n-l 1 

",1M. 

a. 
1 

a. 
1 

> 0 for 

< 0 for 

i > j 

i < j 

, 

a. )2 
1 

'" Imin (a. 
1<'<'< 1 =1 J=n 

Define b. '" a. + 1M (i - j) 
1 J 

i " 1,2 •...• n , so that 

bi"bl+lM(i-O 

Then, for i > j , we have 

ai = (ai - ai-I) + (a i - I - ai - 2) + .•• + (a j +1 - aj ) + aj 

~ 1M (i - j) + a. 
J 

'" b. 
1 

.., a > - a " . - ., J 1 

that is a. ~ b. ~ - a. , i > j 
1 1 1 

Similarly we have 

Thus, we obtain 

S '" 

a. :iI b. ~ - a. , i < j 
1 1 1 

n 2 I a. ~ 
. 1 1 
1'" 

(i .. 1,2, ... ,n) , and so 

a. )2 
J 



SOLUTIONS (78-79) 

79. Let x
1

, ••. ,xn be n real numbers such that 

Prove that 

(79.0) 

Solution: For 1 ~ k S n~l we have 

211 o ~ k - 1 - n S 1 - n ' 
2n and for n+r ~ k S n we have 

o S 1 + 1 - ~ ~ 1 - 1 
n k n ' 

so that 

(79.1) ~ - 1 - ~I ~ 1 - ~ • 1 ~ k S n • 

n 
Thus, as L ~ = 0, we have 

k=l 

1 n 12 1 
S - t - - 1 - - Ix I 

2 k-l k n k 

lIn 
S -2 (1 - -) t Ix. I , by (79.1) • 

n k=l It 

n 
The inequality (79.0) now follows as L IXkl = 1 . 

k-l 

145 
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on Prove that the sum of two consecutive odd primes lS the ou. 

product of at least three (possibly repeated) prime factors. 

Solution: 
th 

Let Pn denote the n prime number, so that Pl = 2 , 

P2 = 3, P3 = 5 , .•• For n ~ 2 , we consider 

qn • Pn + Pn+1' ClearlY
k 

qn 
prime factor then q = 2 for 

3 n 

is even. If qn has exactly one 

some positive integer k, and as 

proving the result in this case. qn ~ 3 + 5 '" 2 we have k ~ 3 

If q has exactly two distinct prime factors, then we have 
n 

q '" 2kpl for positive integers k, l and an odd prime p. If 
n 

k ~ 2 or l ~ 2 the result holds. If k '" l '" 1 then, as 

P > P ,we have n+l n 

which is impossible as Pn and Pn+1 are consecutive primes. This 

completes the proof. 

81. Let f(x) be an integrable function on the closed interval 

[rr/2,rr] and suppose that 

(81.0) 

Prove that 

C2 f (x)SinkXdx", n I 
1 ~ k :; n-1 , 
k = n • 

If(x) I 1 
~ rr In 2 on a set of positive measure. 

Solution: From (81.0) we have 

(81.1) I [rr f (x) sin kx dx = 1 . 
k=l /2 
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Interchanging the order of summation and integration, and using the 

identity 

n 
L sin k.x • 

k=l 

x cos- -2 
1 

COli (n + 2.)x 
, 0 < x < 27f , 

(81.1) becomes 

Suppose 

Then we have 

giving 

(81. 2) 

7f on [2" 7f 1, except for a set of measure O. 

~
7f Icos~ - cos(n+~)xl 

1 ~ I f(x) I dx , 
2 

• x 
/2 sln2' 

dx 
. x Sln-2 

• 

Now Jordan's inequality implies that 

and so, on [~ , 7f 1, we have 

(81.3) 1 7f 
• X ~ X . 

Sln -2 

Using (81.3) in (81.2) we obtain 

l<-L..r
7f 

dx .. 1 , 
.e.n 2 lrr /2 x 
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which is impossible. Hence I f(x) I on a set of positive 

measure. 

82. For n = 0,1,2, ... , let 

(82.0) s 
n 

= 3/a + Va + Va + 
n n-1 n-2 .•. + 3;a;; o 

where Show that lim s 
n 

exists and determine its 
n+ oo 

value. 

Solution: First we 

{s : n • 
3 {9 n 

show by mathematical induction that the sequence 

0,1,2, ••. } is non-decreasing. Note that 

s ,,1 o < V2 = sl • Assume that s 1 ~ s n- n Then we have 

S • 3(a + s <. 3/a + s "S 
n n n-1 n+1 n n+1' 

Next we show, also by induction, that the sequence 

{sn: n = 0,1,2, ..• } is bounded above by 2. Clearly SO" 1 < 2 • 

Assume that s 1 < 2 Then we have n-

s = 3/a + s 1 < 3/6 + 2 " 2 n n n- • 

Thus L • lim s exists. Letting n+ oo in 3 + s " a s 
n+ oo n n n n-1 

we obtain L3 " 6 + L , so that L .. 2 • 

83. Let f(x) be a non-negative strictly increasing function on 

the interval [a,b), where a < b. Let A(x) denote the area below 

the curve y" f(x) and above the interval [a,x), where a ~ x ~ b , 

so that A(a) " 0 • 

Let F(x) be a function such that F(a) " 0 and 

(83.0) (x' - x)f(x) < F(x') - F(x) < (x' - x)f(x') 
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for all a ~ x < Xf ~ b. Prove that A(x)· F(x) for a ~ x ~ b • 

Solution: Clearly A(x) satisfies the inequality (83.0). Assume 

that A(x) and F(x) are not identical on [a,b]. Then 

there exists c with a < c S b such that A(c) - F(c) • We 

partition the interval (a,c] by 

~ • a + k(c;a) , 

where n is a positive integer and k· 0,1,2, ••• ,n. Then we have 

Summing from k· 1 to k· n , we obtain 

(83.1) 
n-l 

~ ! f(~) < A(c) 
n k-O K 

Similarly we have 

(83.2) 

From (83.1) and (83.2) we obtain 

n 
< ~ ! f(~) • 

n k-l K 

IA(c) - F(c)1 < «c-a)/n)(f(c) - f(a» 

so that (as A(c) ~ F(c) ) 

This is a contradicton for sufficiently large positive integers n. 

84. Let a and b be two given positive numbers with a < b • 

How should the number r be chosen in the interval [a,b] in order 

to minimize 

(84.0) Ir - x M(r)· max 
a:iixSb x 

? 



150 SOLUTIONS (84-85) 

Solution: For a ~ r :;; b we have 

r 1 if :;; x :l - - a r x , , 
r - x 

" x 
1 r if r :;; x ~ b - -x , 

and so 

M(r)=max(!-II-!) 
a ' b 

Thus, for any c in the interval [a,b), we have 

= min max ( ~ - 1 , 1 - ~) 
a:;;r~b 

= min [ mi~ 
a~r:;;c 

( r r)' max --1 I--
a • b' 

min 
c~r~b 

max(!-1 
a 

Choosing c to be the point in [a,b) such that 

that is 

we have 

and 

so that 

c 
~ -

2ab 
c = a+b ' 

min 
a~r~c 

max (! - 1 1 - !) = 
a ' b 

min max (! - 1 , 1 - !) " 
c~r~b a b 

min 
a~r~c 

min 
c:;;r~b 

(1 - ~) = 1 - ~ 

(~ - 1) c = - - 1 a 

min M(r) = 1 - bC (= £ - 1) = ba+-ba , 
a:;;r:;;b a 

and the required r is (2ab)/(a+b). 
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85. Let {a: n" 1,2, ... } be a sequence of positive real 
n 

numbers with lim a .. 0 and satisfying the condition 
n ... ", n 

an - an+1 > an+1 - an+2 > O. For any € > 0 , let N be a positive 

'" 
integer such that ~ ~ 2€ • 

the inequality 

Prove that L· t (_Ok+1 ~ satisfies 
k-1 

(85.0) 

Solution: 

and 

For n a positive integer, we define 

We have 

L .. S + 
n 

co 
n-1 ~ 

(-1) L (an+r+1 
r=1 

As a - a > a - a , we have n+r-1 n+r n+r n+r+1 

(85.1) 

n 
S .. t (_1)k+1 . 
n k=1 ~ 

Since an" ISn - Sn-1 1 

have 

and L lies between S 1 and S , we n- n 

Taking n" N , where aN < 2€ , we obtain 

ISN - LI < € 

as required. 
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36. Determine all positive continuous functions f(x) defined 

on the intenal [O,lT) for which 

(8~. 0) r f(x) cos rue dx .. (-l)n(2n+1) , n = 0,1,2,3,4 . 

Solution: We begin with the identities 

cos 2x .. 2 2 cos x - 1 • 

cos 3x .. 3 4 cos x - 3 cos x 

cos 4x 4 2 1 .. 8 cos x - 8 cos x + • 

Hence 

cos 4x + 4 cos 3x + 16 cos 2x + 28 cos x + 23 

'" 8 cos4x + 16 cos3x + 24 cos2x + 16 cos x + 8 

2 2 .. 8(cos x + cos x + 1) • 

and so 

ilT 2 2 
8

0 
f(x)(cos x + cos x + 1) dx 

.. 9 + 4(-7) + 16(5) + 28(-3) + 23(1) 

.. 0 • 

which is impossible as f(x) 

no positive functions f(x) 

is positive on [O,lT] 

satisfying (86.0). 

Hence there are 

87. Let P and pI be points on opposite sides of a non­

circular ellipse E such that the tangents to E through P and 

pI respectivelY are parallel and such that the tangents and normals 

to E at P and pI determine a rectangle R of maximum area. 

Determine the equation of E with respect to a rectangular coordin­

ate system, with origin at the centre of E and whose y-axis is 

parallel to the longer side of R. 
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Solution: We choose initially a coordinate system such that the 

Q = 
equation of 

(a cos t , b sin t) 

X2 .t 
E is a2 + b2 " 1 , a > b > 0 . 

(O~t~21T) and Q'-(-acost, 

The points 

-b sin t) 

lie on E and the tangents to E through Q and Q' are parallel. 

We treat the case 0 ~ t ~ 1T/2 as the other cases 1T/2 ~ t ~ 1T , 

1T ~ t ~ 31T/2 , 31T/2 ~ t ~ 21T can be handled by appropriate reflec­

tions. 

Let the normals through Q and Q' meet the tangents through 

Q' and Q at T and T' respectively. Our first aim is to choose 

t so that the area of the rectangle QTQ'T' is maximum. The slope 
-b cos t . of the tangent to E at Q' is . t ' and so the equatlons of a Sln 

the lines Q'T and QT are respectively b cos t x + a sin t y + ab " 0 

and a sin t x - b cos t y - (a
2

_b 2) sin t cos t " O. Thus the lengths 

IQTI and IQ'TI are given by 

2ab 
IQTI " la2sin2t + b2cos2t 

The area of the rectangle QTQ'T' is clearly 

whose maximum value is attained when tan t b 
" - In this 

a 
case 

so that R is not a square. Thus P is the point (-;af:bi' laW:b2) 

is -1 . Rotating the axes and the slope of the tangent at P 

through 1T/4 

(x,y) -+ (X, y) 

clockwise by means of the orthogonal transformation 
1 1 ,where X =12 (x-y) 

tion of the required ellipse is 

, y -/Z (x+y) , we find the equa-



154 SOLUTIONS (88.89) 

1 . 

88. If four distinct points lie in the plane such that any three 

of them can be covered by a disk of unit radius, prove that all four 

points may be covered by a disk of unit radius. 

Solution: We first prove the following special case of Helly's 

theorem: If D. (i· 1,2,3,4) are four disks in the 
l 

plane such that any three have non-empty intersection then all four 

have non-empty intersection. Choose points W,X, Y ,Z in D1ilD{D3 ' 

Dl'1D{D4 ' Dl'~D3~D4 ' Dt D31'! D4 respectively. We consider two cases 

according as one of the points W,X,Y,Z is in or on the (possibly 

degenerate) triangle formed by the other three points, or not. 

In the first case suppose that Z is in or on triangle WXY. 

Then the line segments WX,WY,XY belong to D1"D2 ' D11lD3 ' DtD4 

respectively, so that triangle WXY belongs to D1 ' and thus Z 

belongs to D1 . Hence Z is a point of D{ID2/'1D311D4' 

In the second case WXYZ is a quadrilateral whose diagonals 

intersect at a point C inside WXYZ. Without loss of generality 

we may suppose that C lS the intersection of WY and XZ. Now 

the line segments WY and XZ belong to D1 ~ D3 

respectively. Thus C is both in D1 n D3 and in 

in D1l1D2I)D3~D4' 

and D2!) D4 

D2 n D 4 ' and so 

To solve the problem let A,B,C,D be the four given distinct 

points. Let G be the centre of the unit disk to which A,B,C 

belong. Clearly the distances AG,BG,CG are all less than or equal 

to 1, and so G belongs in the three unit disks UA,UB,UC centred 

at A,B,C respectively. Thus any three of the four disks UA,UB,UC,UD 
have a non-empty intersection, and so by the first result there is a 
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point P in U
A 

nUB" Uc II UD 
A, B, C and D . 

The unit disk centred at P contains 

89. Evaluate the sum 
<XI <XI 

1 
S· L L 

m-1 n-1 m2 _ n2 

m;>!n 

Solution: For positive integers m and N with N > m , we have 

N 
A(m,N) '" I 

n=1 
n;tm 

1 
2 2 m -n 

'" ~ (S(N+m) - S(N-m») ___ 3 __ 
2m 2 ' 4m 

where for r '" 1,2,3, ••• we have set 

S(r)" I 1. '" .e.rtr + c + E(r) , 
k=1 k 

c denoting Euler's constant and the error term E(r) satisfying 

for some absolute constant A. Then 

lim (S(N+m) - S(N-m») 
N+<XI 

.. lim 
N+(X) 

H:::J + E(_J - E(N-oJ 1 
and so 

'" 0 

lim A(m,N) 
N+<XI 

3 .. --
4m

2 , 



156 

and thus 
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M 
S = lim L lim A(m,N) 

M+oo mal N+oo 

3 
= - - lim 4 

M+oo 

M 1 
L2 

mal m 

90. If n is a positive integer which can be expressed in the 

form 

that, 

form 

2 2 2 n .. a + b + c ,where a,b,c are positive integers, prove 
., . 2k . for each posltlve lnteger k, n can be expressed ln the 

2 2 2 A + B + C ,where A,B,C are positive integers. 

Solution: We begin by showing 

X,Y,z are positive 

that if m" x2 + y2 + z2 , where 
.2222 lntegers, then m .. X + Y + Z , 

where X,Y,Z are positive integers. Without loss of generality we 

may choose x ~ y ~ z. Then the required X,Y,Z are given by 

2 
- z , Y .. 2xz Z .. 2yz 

Letting 2k - 2r (2s+l) ,where r ~ 1 , s ~ 0 , we have 

and applying the above argument successively we obtain 

r 
n2k • (n2s+l)2 .. X2 + y2 + Z2 , 

where X,Y,Z are positive integers. 

91. Let G be the group generated by a and b subject to the 

relatl'ons aba - b3 and bS 1 P h G' b l' - .. . rove t at lS a elan. 
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Solution: It suffices to show that a and b commute. The relation 

b b
3 • a a = glves 

giving 

b- 1 b b2 - 1 a .. a , and so 

b-2ab2 • b-1(b-1ab)b 

• b-1(b2a-1)b 

• b2(b-1a-1b) 

• b2(b-1ab)-1 

= b2(b2a-1)-1 

.. b2ab-2 , 

ab4 4 = b a • 

Hence, as bS = 1 , we obtain ab" bSab .. b(b4a)b .. ba • 

92, Let {a : n = 1,2,3, ••• } be a sequence of real numbers 
n co 

satisfying 0 < a < 1 for all 
(X) n 

n and such that t a diverges 
n-1 n 

while t a2 converges. Let f(x) 
n=l n 

be a function defined on [0,1] 
(X) 

such that f"(x) exists and is bounded on [0,1]. If t f(a ) 
n-1 n (X) 

converges, prove that t If(an)r 
n-1 

also converges. 

Solution: Applying the extended mean value theorem to f on the 

interval [O,a 1, there exists w such that 0 < w < a n n n n 
and 

(X) 

2 a 
f(a ) ,. f(O) + a fl (0) + ...llf"(w ) n n 2 n 

If t f(a) converges, then we must have 
n=l n 

lim f(a) = 0 , and so 
n 
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by continuity f(O) '" 0 Next, as If"(x)j ~ M , 0 ~ x ~ 1 , we have 

a2f"(w ) 00 a2f"(w ) 00 
2 

00 00 a f"(w ) 

L 
n n < M . 2 L n 2 n and ~ n n L a , so that both 

2 ~ 2 n 2 
n-1 n-I n=l n=i 

00 00 

converge. Hence f'(O) L a - L f(a ) 
n n 

converges, and 
n=1 n=l 

00 

so as L an diverges, we must have f'(O) = O. Thus 
n=1 

00 
2 

00 a f"(w ) 
= ~ n n 

n=l 2 
converges. 

93. Let a,b,c be real numbers such that the roots of the cubic 

equation 

(93.0) 3 2 x + ax + bx + c .. 0 

are all real. Prove that these roots are bounded above by 

Solution: 

have 

Let p,q,r be the three 

that p ~ q ~ r. Then, 

real roots of (93.0) chosen so 
3 2 as p + ap + bp + c = 0 , we 

3 2 2 2 
x + ax + bx + c = (x-p)(x + (p+a)x + (p +ap+b») • 

The quadratic polynomial x2 + (p+a)x + (p2+ap+b) has q and r as 

its two real roots, and hence its discriminant is non-negative, that 

is 

(93.1) 

Solving (93.1) for p we obtain 

p ~ (2~2-3b - a)/3, which completes the proof. 
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94. Let Zs = {O,1,2,3,4} denote the finite field with S ele­

ments. Let a,b,c,d be elements of Zs with a ~ O. Prove that 

the number N of distinct solutions in Zs of the cubic equation 

f(x) = a + bx + cx2 + dx3 = a 

is given by N" 4 - R ,where R denotes the rank of the matrix 

A .. 

abc d 

b c d a 

c dab 

dab c 

Solution: Define B to be the Vandermonde matrix 

1 1 12 13 

1 2 22 23 

B '" 
1 3 32 33 

1 4 42 43 

so that 

f (1) 1-1fO) 1-2fO) 1-3f(1) 

'f(2) 2-1f(2) 2-2f(2) 2-3f(2) 
BA .. 

f (3) 3-1f(3) 3-2f(3) 3-3f (3) 

f(4) 4-1f(4) 4-2f(4) 4-3f(4) 

As a ~ a , the matrix BA has N zero rows, so that rank BA :iI 4-N. 

Let 

[f(r. ) -1 -2 -3 
(i .. 1, ... , 4-N) r. f(r.) r. f(r.) r. f(r.)] 

1 1 1 1 1 1 1 

be the 4-N non-zero rows of BA , where 1 :iI r 1 < ••• < r 4- N :iI 4 • 
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Clearly 

f(r1) -1 -(3-N) f( ) r 1 f(r1) r1 r 1 

• • • 

f(r
4
_
N

) -1 r
4
_

N
f(r

4
_
N

) -(3-N) 
r 4-N f(r 4-N) 

1 
-1 -(3-N) r 1 · .. r

1 

<= f(r 1) . . . f (r 4-N) • • · .. • 

1 -1 -(3-N) 
r4-N • •• 

r
4
_
N 

;t: 0 • 

so that the rank of BA is exactly 4-N. Finally, since B is 

invertible, we have 

R = rank A = rank BA '" 4-N , 

that is, N = 4 - R • 

95. Prove that 

(95.0) 

lS a rational number. 

Solution: We notice that 

S ,. I 
m,n"l 

(m,n)=l 

1 

(mn)2 

00 00 

1 
2 (rs) 

= L L 1 
d=l r,s=l (rs)2 

GCD(r,s)=d 

Setting r - dm , s '" dn , so that GCD(m,n)· 1 , we obtain 
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that is 

1 
(
1T2) 2 ~ 1 f 
"6"1..1; l.. 2' 

d-1 d m, n=1 (mn) 
GCD(m,n)=1 

5 
S .-2 

161 

96. Prove that there does not exist a rational function f(x) 

with real coefficients such that 

(96.0) 

where p(x) is a non-constant polynomial with real coefficients. 

Solution: Suppose there exists a rational function f(x) and a 

non-constant polynomial p(x) (both with real coefficients) 

such that (96.0) holds. As f(x) is the quotient of two polynomials, 

there exist complex numbers a (~O) , al ' •.• , ar ' b1 ' •.• , bs 

(96.1 ) 

such that 

a(x-a1)···(x-ar ) 
f(x) .. 

(x-b1)···(X-bs) 

Since p(x) is a non-constant polynomial, f(x) can neither be 

constant nor a polynomial, and so s ~ 1 . 

From (96.0) and (96.1), we obtain 

(96.2) a(x+1)s-r .. p(x) . 

If s-r < a , x+l divides 2 for some • 1 ~ i ~ r x -a.x-a. 1 

(_1)2 
1 1 

so a. (-1) - a. .. a , that is, 1 + a. - a. .. a , which 
1 1 1 1 

clearly impossible, and thus s ~ r • 

, and 

is 
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Now let: 
2 

x~c be a factor of x -b1x-b1 ' so that 

(96.3) 

Clearly c ~ -1 . 

must have r ~ 1 

that is 

(96.4) 

c
2 

- b c - b • 0 • 1 1 

As the left siae of 

and x-c I x2-a.x-a. 
1 1 

(96.2) is a polynomial, we 

, for some i, 1 ~ i ~ r , 

2 
c - a.c - a. '" 0 . 

1 1 

From (96.3) and (96.4) we obtain 

which is a contradiction. Hence no such rational function f(x) 

exists. 

97. For n a positive integer, set 

Prove that 

Sen) 
n 1 

= L -
k=O (~J 

Sen) 
n+l n+l Zk 

=- L-
zn+l k=l k 

Solution: For n ~ Z • we have 

zn 
- - S(n-l) 

n 
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and so 

2n+1 n-l 
.. _ + 2n ~ 

n+1 k"O 

2n+1 2n 

• n+1 + (n+l)! 

2n+1 2n 

- n+l + (n+l)! 

[
2k!(n-k)! _ k!(n-k-l)!) 

(n+U! n! 

n-l 
~ k!(n-k-l)!(n-2k-l) 

k-O 

n-l t (k! (n-k) ! - (k+l)!(n-k-l)!) 
k=O 

2n+1 
.. _+ 

n+l 

n 
2 (0" '0') (n+l)! .n. - n .. 

2n+1 --n+l ' 

which gives the required result as 

2 
~ S(1) 

2 22 
,,- +-1 2 
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98. Let u(x) be a non-trivial solution of the differential 

equation 

utI + pu - 0 , 

defined on the interval I" [l,ro) ,where p" p(x) 1S continuous 

on I. Prove that u has only finitely many zeros in any interval 

[a,b], 1 ~ a < b • 

(A zero of u(x) is a point z, 1 ~ z < ro , with u(z) .. 0 ). 



164 SOLUTIONS (98-99) 

Solution: Let S denote the set of zeros of u(x) on the interval 

[a,b], 1 ~ a < b. We will assume that S is infinite 

and derive a contradiction. The Bolzano-Weierstrass theorem implies 

that S' has at least: oneaccumulation point, say c, in [a,b]. Hence, 

there exists either a decreasing or increasing sequence of zeros 

{x : n • 1,2,3, ••• } converging to c. As u is continuous we 
n 

have u(c)· O. Applying the mean value theorem to u on the 

intervals with end-points xn and xn+l (n. 1,2,3, ••• ) , there 

exists a sequence {Yn: n • 1,2,3, ••• } with Yn lying between 

xn and xn+1 and u'(Yn)· 0 for n· 1,2,3 •••.• By the contin­

uityof u' we see that u'(c)· 0 since the y 's converge to c. 
n 

Now define 

2 2 
q • q(x) • u + u' • C ~ x ~ b • 

Then q(c) • 0 and 

q'(x) ·2uu'(l-p) 

so that 

(98.1) 

where Ipl ~ K-l on [c,b]. From (98.1) we deduce that 

q(x) ~ q(c)eK(x-c). c ~ x ~ b • 

However q(x) ~ 0 so that q(c) • 0 implies that q(x) - 0 on 

[c,b], that is u(x) = 0 on [c,b]. 

The proof will be completed by showing that u(x) - 0 on (a,c]. 

We set 

vex) • u(a+c-x) 

and 

rex) • p(a+c-x) 

for a ~ x ~ c. Then v is a solution of the differential equation 
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V" + rv = 0 

satisfying v(a) = 0 , v'(a) • 0, By the above argument we deduce 

that vex) = 0 on [a,c], and thus u(x) = 0 on [a,c). 

This shows that u(x) = 0 on [a,b]. for any b > a , and so 

u(x) = 0 on [l,~). contrary to assumption, 

99. 
points 

Let p, (j • O. 1, 2, ... ,n-l) 
J 

on a circle of unit radius. 

be n (~2) equally spaced 

Evaluate the sum 

Sen) .. l Ip,p 12 • 
OSj<k!ln-l J k 

where IpQI denotes the distance between the points P and Q • 

Solution: Without loss of generality we may take Pj (j .. 0,1,2, ..• ,n-l) 

to be the point exp(2rrji/n) on the unit circle Izl" 1 

in the complex plane. Then, for 0 ~ j < k S n-l , we have 

and so 

where 

IPjPkI2 .. lexp(2rrji/n) - exp(2rrki/n)!2 

.. 2 - exp(2rr(k-j)i/n) - exp(-2rr(k-j)i/n) 

n-2 n-l 
S(n)"! l (2 - exp(2rr(k-j)i/n) - exp(-2rr(k-j)i/n» 

j .. O k-j+l 

n-2 
• 2 i (n-l-j) - A - A 

n n j-O 

n-2 n-l 
A .. I t exp(2rr(k-j)i/n) 
n j-O k-j+l 

and A denotes the complex conjugate of A •. Now 
n n 
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A _ nI2 exp(2ni/n) - exp(2ni(n-j)/n) 
n j-O 1 - exp(2ni!n) 

_ (n-l)exp(2ni/n) _ I 
1 - exp(2ni/n) 1 - exp(2ni/n) 

n-2 
L exp(-2nij/n) 

j-O 

(n-l)exp(2ni/n) _ 1 
- 1 - e xp ( 2n i 7 n) -::"1---e-xp"::(r-":2-n"'-i /""'n"'-) 

and so 

Henc!,! we obtain 

giving 

n exp(2ni/n) 
= 1 - exp(21Tifn) , 

A + A =-n 
n n 

sen) = 2(n-l)2 - 2 (n-2)(n-l) + n 
2 

Sen) 2 = n • 

100. Let M be a 3x3 matrix with entries chosen at random from 

the finite field Z2· {O,l}. What is the probability that M is 

invertible1 

Solution: Let M = (a .. ), 1 ~ i , j ~ 3 , so that 
1J 

where 

If (All,A12,A13)· <0,0,0) , the number of corresponding triples 

(all,a12,a13) such that D = ° is 8. For each triple 

(Ali,A12,A13) ~ (0,0,0) , the number of corresponding triples 

(all,a12,a13) with D = ° is 4. Hence the number N of matrices 
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M with D 5 0 is 

(100.1) N = an + 4(64-n) = 4n + 256 , 

where n is the number of sextuples (a21,a22,a23,a31,a32,a33) with 

All = A12 5 A13 • 0 . 

If a21 3 a22 • a23 • 0 there are a triples (a31,a32,a33) 

with All = A12 • A13 = O. For each triple (a21,a22,a23) ~ (0,0,0), 

there are 2 triples (a31,a32,a33) with All = A12 = A13 • 0 . 

Rence we have 

n = !Xa + 7X2 • 22 • 

and so N· 344 • 

The required probability is 

512 - 344 = 168 ~ 0 328 
512 512 • 





ABBREVIATIONS 

ADM Archiv der Mathematik 

AI Analytiq Inequalities by D.S. Mitrinovi~, 
Springer-Verlag (19701 

AMM American Mathematical Monthly 

BLMS Bulletin of the London Mathematical Society 

CF Convex Figures by I.M. Yaglom and V.G. 
Boltyanskii, Holt, Rinehart and Winston (19611 

CM Crux Mathematicorum (formerly Eureka) 

CMB Canadian Mathematical Bulletin 

CN Course Notes for Mathematics 69.112, 
Carleton University (1984) 

ETN Elementary Theory of Numbers by W. sierpirtski, 
Warsaw <19641 

GCEA Oxford and Cambridge Schools Examination Board, 
General Certificate Examination, Scholarship Level, 
Mathematics and Higher Mathematics 

GCEB Oxford and Cambridge Schools Examination Board, 
General Certificate Examination, Scholarship Level, 
Mathematics for Science 

HCM Oxford and Cambridge Schools Examination Board, 
Higher Certificate Mathematics (Group III) 

IMO International Mathematical Olympiad 

JUM Journal of Undergraduate Mathematics 

MM Mathematics Magazine 

NMT Nordisk Matematisk Tidskrift 

PMA Principles of Mathematical Analysis by W. Rudin, 
McGraw-Hill (1964) 

PSM Publicacions, Secci6 de Matematiques, Universitat 
Autbnoma de Barcelona 

TN Theory of Numbers by G.B. Mathews, Chelsea N.Y. 
(1961) 

WLP William Lowell Putnam Mathematical Competition 

169 





REFERENCES 

Problem 

01: suggested by Problem 3, IMO (1970). 

02: see Problem 382, CM 4 (1978), p.250. 

03: see Problem 304, CM 4 (1978), p.ll. 

04: see Problem 138, CM 2 (1976), p.68. 

05: suggested by Problem 161, CM 2 (1976), p.135. 
06: see Problem 19, PMA, p.129. 

08: suggested by Problem 162 CM 2 (1976), p.135. 

09: suggested by Problem 207, CM 3 (1977), p.10. 

10: suggested by Problem 5, GCEA (1954), Paper I. 

11: see Problem 1, HCM (1947), Paper 5. 

13: see Problem 3, IMO (1983). 

15: 

16: 
17: 

18: 

19: 

see Problem 4, GCEA (1952) , 

see Problem 1, GCEA (1952), 

see Problem 9, GCEA (1955) , 

see Problem 4, GCEA (1955), 

suggested by Problem 2, HCM 

Paper V. 

Paper V. 
Paper V. 

Paper V. 

(1949), Paper 

20: based on Problem 6, GCEA (1952), Paper V. 
21: see Problem 2(i), GCES (1955), paper V. 

23: suggested by Problem 18, TN, p.318. 

7. 

24: suggested by Problem J-2, CM 6 (1980), p.145. 

26: suggested by Problem A-3, WLP (1980). 

27: see Problem 3, HCM (1947), paper 5. 

28: suggested by Problem 2(ii), GCES (1955), Paper V. 

29: suggested by Problem 916, CM 10 (1984), p.54. 

30: see AMM 76 (1969), pp.1l30-ll31. 

31: see Problem 528, CM 7 (1981), p.90. 
32: based on Problem 4, GCEA (1953), Paper VII. 
33: see Problem 3, HCM (1948), paper 7. 

36: suggested by Problem 124, CM 2 (1976), p.119. 

37: based on Problem 8, GCEA (1952), Paper V. 
38: based on Problem 4, HCM (1943), paper S. 
40: see Problem 10(ii), GCEA (1954), Paper VI. 

41: based on Problem 5, HCM (1944), paper S. 

171 



42: 
43: 
44: 
45: 
48 : 
49: 

see Problem 853, CM 9 (1983), p.178. 

see Problem 3(ii), HCM (1949), Paper 5. 

see Problem 767, CM 9 (1983), p.281. 

see Problem 5, GCEA (1955), paper V. 
suggested by problem A-6, WLP (1973). 

based on Problem B-6, WLP (1974). 
50: suggested by Problem 4, HCM (1949), Paper 7. 
53: based on MM 44 (1971), pp.9-10. 

54: see problem 602, eM 8 (1982), p.17. 

55: based on ETN, pp.124-125. 
57: see problem 7, HCM (1948), Paper 5. 
58: suggested by problem 6, eM 7 (1981), p.236. 

59: see Problem 5, HCM (1943), Paper 7. 
61: suggested by Problem B-2, WLP (1984). 
63: suggested by Problem A-3, WLP (1978). 
64: based on Problem A-5, WLP (1984). 

65: suggested by problem B-1, WLP (1976). 
66: suggested by Problem 326, CM 4 (1978), p.66. 

67: suggested by Problem B-5, WLP (1968). 
69: suggested by Problem 3, eM 7 (1981), p.268. 

71: see AI, p.221. 
72: for a related result see AMM 76 (1969), p.1125. 
73: see Problem 4 (Afternoon Session), WLP (1961). 

74: suggested by problem 1, IMO (1975). 
75: suggested by Problem B-2, WLP (1971). 
76: for more general results see BLMS 11 (1979), 

pp.268-272. 

77: based on ADM 25 (1974), pp.41-44. 
78: see Problem E2032, AMM 75 (1968), p.1124. 

79: see AI, pp.346-347. 
80: see Problem 21, CN, p.A72*3/4. 
81: suggested by Problem A-6 , WLP (1972). 
82: for related results see JUM 15 (1983), pp.49-52. 
83: based on AMM 73 (1966), pp.477-483. 
84: based on AMM 57 (1950), pp.26-28. 
85: based on AMM 69 (1962), pp. 215-217. 
86: suggested by problem 2 (Morning Session), WLP (1964). 

172 



BB. see cr , Chapter 2. 

90. ba •• d on PSM, 2B (1994), pp.75-BO. 
911 based on Problem 93, eMB 7 (1964), p.306. 
92: suggested by Problem 1060, MM 52 (1979), p.46. 
93: see Problem 105, CMS 9 (1966), p.532. 
95: see Problem 171, CMS 15 (1972), p.313. 
96: see Problem 179, CMS 15 (1972), pp.614-615. 
97: see NMT 29 (1947), pp.97-103. 
99: suggested by Problem 1104, MM 53 (1990), p.244. 

173 





A CATALOG OF SELECTED 

DOVER BOOKS 
IN SCIENCE AND MATHEMATICS 

co 



A CAT ALOe OF SELECTED 

DOVER BOOKS 
IN SCIENCE AND MATHEMATICS 

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V.V. Nemytskii 
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathe­
maticians covers classical differential equations as well as topological dynamics 
and ergodic theory. Bibliographies. 523pp. 5% x 8~. 65954-2 Pa. $14.95 

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip 
Barker. Basic textbook covers theory of matrices and its applications to systems of 
linear equations and related topics such as determinants, eigenvalues and differ­
ential equations. Numerous exercises. 432pp. 5% x 8~. 66014-1 Pa. $10.95 

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text 
presents the quantum theory in terms of qualitative and imaginative concepts, 
followed by specific applications worked out in mathematical detail. Preface. 
Index. 655pp. 5% x 8~. 65969-0 Pa. $14.95 

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate's lucid treatment of 
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic 
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp. 
5% x 8~. 65984-4 Pa. $12.95 

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The 
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic 
understanding of the electronic structure of covalent and ionic solids, simple 
metals, transition metals and their compounds. Problems. 1980 edition. 582pp. 
6li x 911. 66021-4 Pa, $16.95 

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCTION, M, Necati 
Ozisik. Systematic, comprehensive treatment of modern mathematical methods of 
solving problems in heat conduction and diffusion. Numerous examples and 
problems. Selected references. Appendices. 505pp. 5% x 8~. 65990-9 Pa. $12.95 

A SHORT HISTORY OF CHEMISTRY (3rd edition), J.R. Partington. Classic 
exposition explores origins of chemistry, alchemy, early medical chemistry, nature 
of atmosphere, theory of valency, laws and structure of atomic theory, much more. 
428pp. 5% x 8~. (Available in U.S. only) 65977-1 Pa. $11.95 

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully rea­
soned study covers such topics as Ptolemaic theory, work of Copernicus, Kepler, 
Newton, Eddington's work on stars, much more. Illustrated. References. 521pp. 
5% x 8~. 65994-1 Pa. $12.95 

PRINCIPLES O.F METEOROLOGICAL ANALYSIS, Walter J. Saucier. Highly 
respected, abundantly illustrated classic reviews atmospheric variables, hydro­
statics, static stability, various analyses (scalar, cross-section, isobaric, isentropic, 
more). For intermediate meteorology students. 454pp. 6\1 x 9\4. 65979-8 Pa. $14,95 



CATALOG OF DOVER BOOKS 

ASYMPTOTIC METHODS IN ANALYSIS, N.G. de Bruijn. An inexpensive, 
comprehensive guide to asymptotic methods-the pioneering work that teaches by 
explaining worked examples in detail. Index. 224pp. 5% x 8~. 64221-6 Pa. $7.95 

OPTICAL RESONA:'-JCE AND TWO-LEVEL ATOMS, L. AllenandJ.H. Eberly. 
Clear, comprehensive introduction to basic principles behind all quamum optical 
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 518 x 8~. 

65533-4 Pa. $8.95 

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying 
complex algebra till harmonic functions have been analyzed from real variable 
viewpoint. Includes problems with answers. 364pp. 518 x Sli. 61388-7 Pa. $9.95 

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of 
best introductions; especially for specialist in other fields. Treatment is physical 
rather than mathematical. SO illustrations. 257pp. 518 x Sli. 601 U,-3 Pa. $6.95 

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of 
fundamentals of analytic function theory-plus lucid exposition of five important 
applications: Potential Theory; Ordinary Differential Equations; Fourier Trans­
forms; Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at 
chapter ends. 512pp. 5% x SYi. 64670-X Pa. $12.95 

ULTRASONIC ABSORPTION: An Introduction to the Theory of Sound Absorp­
tion and Dispersion in Gases, Liquids and Solids, A.B. Bhatia. Standard reference 
in the field provides a clear, systematically organized introductory review of 
fundamental concepts for advanced graduate studems, research workers. Numerous 
diagrams. Bibliography. 440pp. 5% x S~. 64917-2 Pa. $11.95 

UNBOUNDED LINEAR OPERATORS: Theory and Applications, Seymour 
Goldberg. Classic presents systematic treatment of the theory of unbounded linear 
operators in normed lineal spaces with applications to differential equations. 
Bibliography. 199pp. 5% x Sli. 64S30-3 Pa. $7.9!l 

LIGHT SCATTERING BY SMALL PARTICLES, H.G van de Hulst. Compre­
hensive treatment including full range of useful approximation methods for 
researchers in chemistry. meteorology and astronomy. 44 illustrations. 470pp. 
5% x Sli. 6422S-3 Pa. $11.9.1 

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid, 
insightful book presents ideal coverage of subject. 334 exercises make book perfect 
for self-study. 55 figures. 352pp. 5lii x 8~. 64025-6 Pa. $11.95 

OPTICKS, Sir Isaac Newton. Newton's own experimems with spectroscopy, 
colors, lenses, reflection, refraction, etc., in language the layman can follow. 
Foreword by Albert Einstein. 532pp. 5% x Sli. 60205-2 Pa. $11.95 

GENERALIZED INTEGRAL TRANSFORMATIONS, A.H. Zemanian. Gradu­
ate-level study of recent generalizations of the Laplace, Mellin, Hankel, K. 
Weierstrass, convolution and other simple transformations. Bibliography, 320pp. 
5% x Sli. 65375-7 Pa. $S.95 



CATALOG OF DOVER BOOKS 

SPECIAL FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Fa­
mous Russian work treating more important special functions, with applications 
to specific problems of physics and engineering. 38 figures. 308pp. 5% x 8~. 

60624-4 Pa. $9.95 

OBSERVATIONAL ASTRONOMY FOR AMATEURS, J.B. Sidgwick. Mine of 
useful data for observation of sun, moon, planets, ast.eroids, aurorae, meteors, 
comets, variables, binaries, etc. 39 illustrations. 384pp. 5% x 811. (Available in U.S. 
only) 24033-9 Pa. $8.95 

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-written treatment 
of extremely useful mathematical tool with wide applications. Volterra Equations, 
Fredholm Equations, much more. Advanced undergraduate to graduate level. 
Exercises. Bibliography. 238pp. 5% x 8~. 64828-1 Pa. $8.95 

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted 
logician's lucid treatment of historical developments, set theory, model theory, 
recursion theory and constructivism, proof theory, more. 3 appendixes. Bibli­
ography. 1981 edition. ix + 283pp. 5% x 8'l2. 67632-3 Pa. $8.95 

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical 
solution of problems; covers seven types of equations. " ... a welcome contribution 
to the existing literature ... . "-Math Reviews. 490pp. 5% x 8'l2. 64232-1 Pa. $11.95 

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach 
developed by U.S. Air Force Academy. Designed as a first course. Problems, 
exercises. Numerous illustrations. 455pp. 5% x 8~. 60061-0 Pa. $9.95 

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA­
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants, 
orthonormal bases, Laplace transforms, much more. Exercises with solutions. 
Undergraduate level. 416pp. 5% x 8'l2. 6.5191-6 Pa. $\0.95 

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo­
retical and experimental treatment of the uniform flow of air and viscous fluids past 
two-dimensional aerofoils and three-dimensional wings; many other topics. 654pp. 
5% x 8'l2. 65465-6 Pa. $16.95 

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep­
tionally clear exposition of important discipline with applications to sociology, 
psychology, economics. Many illustrative examples; over 250 problems. 260pp. 
5% x 8'l2. 65084-7 Pa. $8.95 

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic 
covers steady boundary layers in two- and three-dimensional flow, unsteady 
boundary layers, stability, observational techniques, much more. 708pp. 5% x 811. 

65646-2 Pa. $18.95 

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition, 
Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces, 
fundamental equations, geometry on a surface, conformal mapping, other topics. 
Problems. 240pp. 5% x 811. 65609-8 Pa. $8.95 



CATALOG OF DOVER BOOKS 

CHALLENGI:'IIG MATHEMATICAL PROBLEMS WITH ELEMENTARY 
SOLCTIONS, A.M. Yaglom and I.M. Yaglom. Over 170 challenging problems on 
probability theory, combinatorial analysis, points and lines, topology, convex 
polygons, many other topics. Solutions. Total of 445pp. 5% x 8\i. Two-vol. set. 

Vol. 165536-9 Pa. $7.95 
Vol. II 65537-7 Pa. $7.95 

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLU­
TIONS, Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate 
elementary and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8\i. 

65355-2 Pa. $4.95 

EXPERIMENTS IN TOPOLOG Y, Stephen Barr. Classic, lively explanation of 
one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, 
map coloring, problem of the Koenigsberg bridges, much more, described with 
clarity and wit. 43 figures. 210pp. 5% x 8%. 25933-\ Pa. $6.95 

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical 
treatment makes relativity more accessible than ever before. Over 60 drawings 
illustrate concepts more clearly than text alone. Only high school geometry needed. 
Bibliography. 128pp. 6!i x 9'4, 25965-X Pa. $7.95 

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl 
A, Coddington, A thorough and systematic first course in elementary differential 
equations for undergraduates in mathematics and science, with many exercises and 
problems (with answers), Index. 304pp. 5% x 8%. 65942-9 Pa. $8.95 

FOCRIER SERIES AND ORTHOGONAL FUNCTIO:'llS, Harry F, Davis, An 
incisive text combining theory and practical example to introduce Fourier series, 
orthogonal functions and applications of (he Fourier method to boundary-value 
problems. 570 exercises. Answers and notes. 416pp, 5% x 8%. 65973-9 Pa. $11.95 

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. 
Superb self-contained text covers "abstract algebra": sets and numbers, theory of 
groups, theory of rings, much more. Numerous well-chosen examples, exercises. 
247pp, 5% x 8%, 65940-2 Pa. $8.95 

Prices subject to change without notice, 
Available at your book dealer or write for free Mathematics and Science Catalog to Dept. GI, 
Dover Publications, Inc., 31 East 2nd St" Mineola, N, y, 11501. Dover publishes more than 175 
books each year on science, elementary and advanced mathematics, biology, music, an, 
literature, history. social sciences and other areas, 


